(2.1) How many atoms of 235 U exist in 1 kg of uranium oxide, U_3O_8 , made of natural uranium? First we must define the Avogadro number, N_A

$$N_A = 6.022 \cdot 10^{23} \cdot mole^{-1}$$

Then we have to define the molecular weights of U, O, and U_3O_8 (appendix I):

$$Mw_u = 238.03 \cdot \frac{gm}{mole}$$
 $Mw_0 = 16.00 \cdot \frac{gm}{mole}$ $Mw_{u308} = 3 \cdot Mw_u + 8 \cdot Mw_0$

In natural uranium, the atomic fraction of ²³⁵U (x) is 0.724% (Table 2.1), i.e.:

$$x := \frac{0.724}{100}$$

The total amount of uranium oxide (U_3O_8), m_U , is 1 kg:

$$m_U = 1 \cdot kg$$

Now we can calulate the number of $^{235}\mathrm{U}$ atoms, N_{U} , in this amount of uranium oxide (remember 3 U per $\mathrm{U}_3\mathrm{O}_8$):

$$N_U = 3 \cdot \frac{m_U}{Mw_{u308}} \cdot x \cdot N_A$$
 $N_U = 1.553 \cdot 10^{22}$ atoms