(2.2) What is the atomic fraction of deuterium in water with the mole fraction of 0.81 for H_2O , 0.18 for H_2O , and 0.01 for D_2O ?

First we define the given mole fractions of the three types of water molecules:

$$x_{H2O} = 0.81$$
 $x_{HDO} = 0.18$ $x_{D2O} = 0.01$

The total number of normal hydrogen atoms in one mole of water is given by:

$$n_{H} = 2 \cdot x_{H20} + 1 \cdot x_{HD0}$$

and the total number of heavy hydrogen atoms in one mole of water by:

$$n_D = 1 \cdot x_{HDO} + 2 \cdot x_{D2O}$$

From eqn. (2.2) on p. 13 we get:

$$x_D = \frac{n_D}{n_D + n_H}$$
 $x_D = 0.100$