(2.8) In an investigation the isotope ratio $180 / 160$ was found to be $2.045 \times 10-3$ for fresh water and 2.127×10^{-3} for carbon dioxide in the atmosphere. Calculate the equilibrium constant (mole fractions!) for the reaction:
$\mathrm{H}_{2}{ }^{18} \mathrm{O}(\mathrm{I})+\mathrm{C}^{16} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2}{ }^{16} \mathrm{O}(\mathrm{I})+\mathrm{C}^{18} \mathrm{O}^{16} \mathrm{O}(\mathrm{g})$
$k=x \mathrm{H}_{2}{ }^{16} \mathrm{O}(\mathrm{I})^{*} x \mathrm{C}^{18} \mathrm{O}^{16} \mathrm{O}(\mathrm{g}) / \mathrm{H}_{2}{ }^{18} \mathrm{O}^{*} x \mathrm{C}^{16} \mathrm{O} 2(\mathrm{~g})$ (from the given reaction)
The isotope ratio in fresh water is given by:
$x_{18 w}=x \mathrm{H}_{2}^{18} \mathrm{O}(\mathrm{I}) / \mathrm{xH}_{2}{ }^{16} \mathrm{O}(\mathrm{I})=2.045^{*} 10^{-3}$
and in the atmosphere:
$x_{18 \mathrm{a}}=x \mathrm{C}^{18} \mathrm{O}^{16} \mathrm{O}(\mathrm{g}) /\left(2 x \mathrm{C}^{16} \mathrm{O}_{2}(\mathrm{~g})+x \mathrm{C}^{18} \mathrm{O}^{16} \mathrm{O}(\mathrm{g})\right)=2.127^{*} 10^{-3}$
We can now rewrite the equilibrium constant as:
$k=\left(1 / x_{18 \mathrm{w}}\right)^{*} 2^{*} x_{18 a}$; neglect fraction $x \mathrm{C}^{18} \mathrm{O}^{16}(\mathrm{~g})$ in comparison with $x \mathrm{C}^{16} \mathrm{O}_{2}(\mathrm{~g})$.

$$
x_{18 w}:=2.045 \cdot 10^{-3} \quad x_{18 a}:=2.127 \cdot 10^{-3} \quad k:=\frac{2 \cdot x_{18}}{x_{18} w} \quad k=2.080
$$

