(2.10) In a distillation column with total reflux, 10 B is enriched through exchange distillation of $\mathrm{BF}_{3} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ from the natural value of 20 atom $\%$ to a product containing $95 \% 10 \mathrm{~B}$. The packed column has a length of 5 m and a diameter of 3 cm . What is the approximate height of a theoretical stage if the enrichment factor is 0.026 ?

The enrichment factor is defined as $\alpha-1$ (p. 31 below eqn. (2.47)), hence we can calculate a as:
$\alpha:=1+0.026$
The column height, h, is given as:
$h:=5 \cdot m$
The product and feed atomic fractions are:
$x_{p}:=\frac{95}{100} \quad x_{f}:=\frac{20}{100}$
Using eqn. (2.50) we can estimate the number of theoretical stages, Np , as:
$N p:=\frac{\ln \left[\frac{x_{p} \cdot\left(1-x_{f}\right)}{x_{f}\left(1-x_{p}\right)}\right]}{\ln (\alpha)} \quad N p=168.723$
The height of a theoretical plate, HETP, is then given by the height divided by the number of theoretical plates:

HETP $:=\frac{h}{N p}$
$H E T P=0.030 \cdot \mathrm{~m}$

