(3.3) Assuming that in the fission of a uranium atom an energy amount of 200 MeV is released, how far would 1 g of 235 U drive a car which consumes 1 liter of gasoline (density $0.70 \mathrm{~g} \mathrm{~cm}-3$) for each 10 km ? The combustion heat of octane is $5500 \mathrm{~kJ} \mathrm{~mole}^{-1}$, and the combustion engine has an efficiency of 18%.

We assume 100% efficiency for energy from uranium. In reality it would probably be more like the $\sim 35 \%$ achieved in nuclear ships.

The molar weight of n-octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ can be estimated as:

MeV $:=1.60217733 \cdot 10^{-13}$.joule $\quad M_{C}:=12.01 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1} \quad M_{H}:=1.008 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}$
$M_{\text {oct }}:=8 \cdot M_{C}+18 \cdot M_{H} \quad M_{\text {oct }}=114.224 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}$
Its combustion energy, $H_{\text {oct }}$, is then:
$H_{\text {comb }}:=5500 \cdot 10^{3} \cdot$ joule \cdot mole $^{-1} \quad \rho_{\text {oct }}:=0.7 \cdot \mathrm{gm} \cdot \mathrm{mL}^{-1}$
$H_{\text {oct }}:=\frac{\rho_{\text {oct }} H_{\text {comb }}}{M_{\text {oct }}} \quad H_{\text {oct }}=3.371 \cdot 10^{7} \cdot$ joule liter ${ }^{-1} \quad(1$ liter can move the car 10 km$)$
Approximating the fission energy of 1235 U atom by 200 MeV , eqn. (19.1) on p. 518, the nuclear energy, Q, is:
$M_{U 235}:=235 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1} \quad N_{A}:=6.0221367 \cdot 10^{23} \cdot \mathrm{~mole}^{-1} \quad Q_{\text {fiss }}:=200 \cdot \mathrm{MeV}$
$Q:=Q_{\text {fiss }} \cdot \frac{1}{M_{U 235}} \cdot N_{A} \quad Q=8.212 \cdot 10^{10} \cdot$ joule $\cdot \mathrm{gm}^{-1} \quad H_{\text {oct }}=3.371 \cdot 10^{7} \cdot$ joule \cdot liter $^{-1}$
dist $:=\frac{1 \cdot g m \cdot Q}{1 \cdot \text { liter } \cdot \mathrm{H}_{\text {oct }} 0.18} \cdot 10 \cdot \mathrm{~km} \quad$ dist $=135347 \cdot \mathrm{~km}$
(In case we use the nuclear thermal efficiency typical for nuclear ships, 35%, we would get:
$\left.\frac{1 \cdot \mathrm{gm} \cdot \mathrm{Q} \cdot 0.35}{1 \cdot \mathrm{liter} \cdot \mathrm{H}_{\text {oct }} 0.18} \cdot 10 \cdot \mathrm{~km}=4737^{\cdot}\right) \cdot \mathrm{km}$

