(3.5) When a neutron is captured in a nucleus, the mass number of the isotope increases one unit. In the following table mass excess values are given for three important isotope pairs:

Definition of units.

$$eV := 1.60217733 \cdot 10^{-19} \cdot joule$$
 $MeV := 10^{6} \cdot eV$

Given mass excess data:

$$\begin{array}{lll} \delta_{235U} \coloneqq 40915 \cdot 10^{3} \cdot \text{eV} & \delta_{236U} \coloneqq 42441 \cdot 10^{3} \cdot \text{eV} \\ \delta_{238U} \coloneqq 47306 \cdot 10^{3} \cdot \text{eV} & \delta_{239U} \coloneqq 50571 \cdot 10^{3} \cdot \text{eV} \\ \delta_{239Pu} \coloneqq 48585 \cdot 10^{3} \cdot \text{eV} & \delta_{240Pu} \coloneqq 50122 \cdot 10^{3} \cdot \text{eV} \\ \delta_{n} \coloneqq 8665 \cdot 10^{-6} \cdot 931.5 \cdot 10^{6} \cdot \text{eV} & \text{from Table 3.1} \end{array}$$

If the average nucleon binding energy in this region is 7.57 MeV one can calculate the difference between this average binding energy and the one really observed in the formation of 236 U, 239 U, and 240 Pu. Calculate this difference.

$$EBA_{aver} = 7.57 \cdot 10^6 \cdot eV$$

$$Q1 := -\delta_{236U} + \delta_{235U} + \delta_{n} \qquad Q1 = 6.545 \cdot \text{MeV} \qquad Q1 - \text{EBA}_{aver} = -1.02 \cdot \text{MeV}$$

$$Q2 := -\delta_{239U} + \delta_{238U} + \delta_{n} \qquad Q2 = 4.806 \cdot \text{MeV} \qquad Q2 - \text{EBA}_{aver} = -2.76 \cdot \text{MeV}$$

$$Q3 := -\delta_{240Pu} + \delta_{239Pu} + \delta_{n} \qquad Q3 = 6.534 \cdot \text{MeV} \qquad Q3 - \text{EBA}_{aver} = -1.04 \cdot \text{MeV}$$