(4.7) One may assume that when 238 U was formed at the genesis an equal amount of 235 U was formed. Today the amount of 238 U is 138 times the amount of 235 U. How long time ago did the genesis occur according to this assumption?

Half-lives from Fig. 5.1, p. 100-101:

$$t_{235} \coloneqq 7.038 \cdot 10^8 \cdot yr$$
 $t_{238} \coloneqq 4.468 \cdot 10^9 \cdot yr$ $\lambda_{235} \coloneqq \frac{\ln(2)}{t_{235}}$ $\lambda_{238} \coloneqq \frac{\ln(2)}{t_{238}}$ Eqn. (4.43)

Eqn. (4.41a) gives:

$$N_{235} = N_{0235} e^{-\lambda_{235} \cdot t}$$
 and $N_{238} = N_{0238} \cdot e^{-\lambda_{238} \cdot t}$ hence: $\frac{N_{238}}{N_{235}} = \frac{N_{0238}}{N_{0235}} \cdot \frac{e^{-\lambda_{238} \cdot t}}{e^{-\lambda_{235} \cdot t}}$ but we know that: $\frac{N_{238}}{N_{235}} = \frac{138}{1}$ and assume that $\frac{N_{0238}}{N_{0235}} = 1$

Using these data we get:

$$\frac{138}{1} = \frac{1}{1} \cdot \frac{e^{-\lambda} 238^{\cdot t}}{e^{-\lambda} 235^{\cdot t}} \qquad \text{or} \qquad 138 = e^{t \cdot (\lambda 235^{-\lambda} 238)}$$

$$t = \frac{ln(138)}{\left(\lambda_{235} - \lambda_{238}\right)}$$
 $t = 1.874 \cdot 10^{17} \cdot \text{sec}$ $t = 5.938 \cdot 10^9 \cdot yr$ ago