(4.7) One may assume that when 238 U was formed at the genesis an equal amount of 235 U was formed. Today the amount of ${ }^{238} \mathrm{U}$ is 138 times the amount of ${ }^{235} \mathrm{U}$. How long time ago did the genesis occur according to this assumption?

Half-lives from Fig. 5.1, p. 100-101:
$\begin{array}{ll}t_{235}:=7.038 \cdot 10^{8} \cdot y r & t_{238}:=4.468 \cdot 10^{9} \cdot y r \\ \lambda_{235}:=\frac{\ln (2)}{t_{235}} & \lambda_{238}:=\frac{\ln (2)}{t_{238}}\end{array}$
Eqn. (4.41a) gives:
$N_{235}=N_{0235} e^{-\lambda 235 \cdot t} \quad$ and $\quad N_{238}=N_{0238} e^{-\lambda 238 \cdot t} \quad$ hence: $\quad \frac{N_{238}}{N_{235}}=\frac{N_{0238}}{N_{0235}} \cdot \frac{e^{-\lambda} 238 \cdot t}{e^{-\lambda} 235^{\prime} \cdot t}$
but we know that: $\frac{N_{238}}{N_{235}}=\frac{138}{1} \quad$ and assume that $\quad \frac{N_{0238}}{N_{0235}}=1$
Using these data we get:

$$
\begin{array}{ll}
\frac{138}{1}=\frac{1}{1} \cdot \frac{e^{-\lambda 238 \cdot t}}{e^{-\lambda} 235^{\cdot t}} & \text { or } \left.\quad 138=e^{t \cdot(\lambda 235-\lambda} 238\right) \\
t:=\frac{\ln (138)}{\left(\lambda 235^{-\lambda} 238\right)} & t=1.874 \cdot 10^{17} \cdot \mathrm{sec} \quad t=5.938 \cdot 10^{9} \cdot y r \quad \text { ago }
\end{array}
$$

