(4.9) A hospital has a 1.5 Ci source of 226 Ra in the form of RaBr₂ solution. If the 222 Rn is pumped out each 48 h, what is (a) the radon activity (in Bq) at that moment, (b) the radon volume at STP?

First the usual definitions of various constants:

 $Bq := sec^{-1} \qquad Ci := 3.7 \cdot 10^{10} \cdot Bq \qquad M_{Ra} := 226 \cdot \frac{gm}{mole} \qquad M_{Rn} := 222 \cdot \frac{gm}{mole} \qquad M_{Br} := 79.91 \cdot \frac{gm}{mole}$ $N_A := 6.022 \cdot 10^{23} \cdot mole^{-1}$ $R_{gas} := 0.08206 \cdot liter \cdot atm \cdot mole^{-1} \cdot K^{-1}$ $M_{RaBr2} := M_{Ra} + 2 \cdot M_{Br}$

.

Then the values given in Table 5.1 for half-lives:

$$t_{226} \coloneqq 1600 \cdot yr$$
 $t_{222} \coloneqq 3.825 \cdot day$
 $\lambda_{226} \coloneqq \frac{ln(2)}{t_{226}}$ $\lambda_{222} \coloneqq \frac{ln(2)}{t_{222}}$ Eqn. (4.43)

We need also the acticity of ²²⁶Ra in the source, which is given as:

$$R_{Ra} = 1.5 \cdot Ci$$
 $R_{Ra} = 5.55 \cdot 10^{10} \cdot Bq$

and the time for buildup of new radon: $t = 48 \cdot hr$

$$R_{Rn} = R_{Ra} \left(1 - exp(-\lambda_{222} \cdot t) \right)$$
 Eqn. (4.55) with $R = N^* \lambda$ $R_{Rn} = 1.687 \cdot 10^{10} \cdot Bq$

STP corresponds to: $Temp := 273.15 \cdot K$ $p := 1 \cdot atm$

Number of Rn atoms, $N_{\rm Rn}$, the number of Rn moles, $n_{\rm Rn}$, and the corresponding volume, $V_{\rm Rn}$, are given by:

$$N_{Rn} \coloneqq \frac{R_{Rn}}{\lambda_{222}} \qquad n_{Rn} \coloneqq \frac{N_{Rn}}{N_{A}} \qquad n_{Rn} = 1.336 \cdot 10^{-8}$$
$$V_{Rn} \coloneqq \frac{n_{Rn} \cdot R_{gas} \cdot Temp}{p} \qquad \text{(the general gas-law)}$$

Hence:

$$V_{Rn} = 2.994 \cdot 10^{-10} \cdot m^3$$
 or $V_{Rn} = 2.994 \cdot 10^{-7} \cdot liter$ or $V_{Rn} = 2.994 \cdot 10^{-4} \cdot mL$