(4.11) A recently prepared 212 Pb sample has the activity of 106 dpm. (a) What is the activity 2 h later? (b) How many lead atoms are left in the sample at this moment? 106 dpm. (a) What is the activity 2 h later? (b)

First the standard definitions:

$$N_A := 6.022 \cdot 10^{23} \cdot mole^{-1}$$
 $Bq := sec^{-1}$

Then the data given:

$$t_{212} = 10.64 \cdot hr$$
 $\lambda_{212} = \frac{ln(2)}{t_{212}}$

$$t := 2 \cdot hr$$
 $R_0 := 10^6 \cdot min^{-1}$

(a):
$$R_{2h} = R_0 \cdot \exp(-\lambda_{212} \cdot t)$$
 Eqn. (4.41b) $R_{2h} = 1.463 \cdot 10^4 \cdot Bq$

(b):
$$N_{2h} = \frac{R_{2h}}{\lambda_{212}}$$
 Eqn. (4.40b) $N_{2h} = 8.085 \cdot 10^8$ atoms ²¹² Pb