(4.11) A recently prepared 212 Pb sample has the activity of 106 dpm . (a) What is the activity 2 h later? (b) How many lead atoms are left in the sample at this moment? $\mathrm{t}_{1 / 2} 10.64 \mathrm{~h}$.

First the standard definitions:

$$
N_{A}:=6.022 \cdot 10^{23} \cdot \text { mole }^{-1} \quad B q:=\sec ^{-1}
$$

Then the data given:

$$
\begin{array}{lr}
t_{212}:=10.64 \cdot h r & \lambda 212:=\frac{\ln (2)}{t_{212}} \\
t:=2 \cdot h r & R_{0}:=10^{6} \cdot \mathrm{~min}^{-1}
\end{array}
$$

(a): $\quad R_{2 h}:=R_{0} \cdot \exp \left(-\lambda_{212} \cdot t\right) \quad$ Eqn. (4.41b) $\quad R_{2 h}=1.463 \cdot 10^{4} \cdot B q$
(b): $\quad N_{2 h}:=\frac{R_{2 h}}{\lambda_{212}} \quad$ Eqn. (4.40b) $\quad N_{2 h}=8.085 \cdot 10^{8} \quad$ atoms 212 Pb

