(4.14) In the ion source of a mass spectrograph, UF₆ vapor is introduced which partly becomes ionized to UF₅⁺. The ionic currents were measured at mass positions 333, 330, and 329. The ion current ratios were $i_{333}/i_{330} = 139$, and $i_{330}/i_{329} = 141.5$. What is the half-life of ²³⁴U if that of ²³⁸U is 4.5*10⁹ y? Radioactive equilibrium is assumed to exist in the UF₆.

·yr

First we define the atomic weights

$$M_F := 19 \cdot gm \cdot mole^{-1}$$
 $M_{U234} := 234 \cdot gm \cdot mole^{-1}$
 $M_{U238} := 238 \cdot gm \cdot mole^{-1}$
 $M_{U234F5} := M_{U234} + 5 \cdot M_F$
 $M_{U234F5} = 0.329 \cdot kg mole^{-1}$
 $M_{U238F5} := M_{U238} + 5 \cdot M_F$
 $M_{U238F5} = 0.333 \cdot kg mole^{-1}$

The measured ionic currents are:

$$I_{333} \coloneqq 139$$
 $I_{329} \simeq 141.5$
Ratio := $\frac{1}{I_{333}I_{329}}$ Ratio = 5.084 $\cdot 10^{-5}$

Then apply the condition for radioactive equilibrium: $N_m/t_{1/2m} = N_d/t_{1/2d}$

$$t_{238} = 4.5 \cdot 10^9 \cdot yr$$
 Known half-life of the mother
 $t_{234} = t_{238} \cdot Ratio$ $t_{234} = 7.22 \cdot 10^{12} \cdot sec$ or $t_{234} = 2.3 \cdot 10^5$