$(5.5)~0.11~cm^3$ helium gas at NTP was isolated from 100 g of uranium mineral containing 5 ppm uranium. How old is the mineral?

As usual we first define som useful constants:

$$R := 0.08206 \cdot liter \cdot atm \cdot mole^{-1} \cdot K^{-1}$$
 $N_A := 6.0221367 \cdot 10^{23} \cdot mole^{-1}$ $M_U := 238 \cdot \frac{gm}{mole}$

$$N_A := 6.0221367 \cdot 10^{23} \cdot mole^{-}$$

$$M_U = 238 \cdot \frac{gm}{mole}$$

The volume of He-gas and the amount of uranium as given:

$$V = 0.11 \cdot 10^{-3} \cdot liter$$

$$V := 0.11 \cdot 10^{-3} \cdot liter$$
 $m_{IJ} := 100 \cdot 5 \cdot 10^{-6} \cdot gm$

NTP corresponds to:
$$T := 273.15 \cdot K$$

$$T := 273.15 \cdot K$$

$$n := \frac{p \cdot V}{R \cdot T}$$

The general gas-law $n = 4.907 \cdot 10^{-6}$

$$n = 4.907 \cdot 10^{-6}$$

$$t_{halv} = 4.468 \cdot 10^9 \cdot yr$$
 $\lambda = \frac{ln(2)}{t_{halv}}$ The half-life of uranium.

$$\lambda := \frac{\ln(2)}{t_{hal}}$$

$$N := n \cdot N_A$$
 He atoms $dN_U := \frac{N}{8}$ Decayed U atoms

$$dN_U := \frac{N}{8}$$

$$N_U := \frac{m_U}{M_U} \cdot N_A$$

The number of uranium atoms present.

$$t := \frac{ln\left(\frac{dNU}{NU} + 1\right)}{\lambda}$$

From eqn. (4.41a)

$$t = 5.211 \cdot 10^{16} \cdot \text{sec}$$

$$t = 1.65 \cdot 10^9 \cdot yr$$