(5.6) A mineral was found to contain 39.1 g K and 87.2*10⁻⁶ liter Ar at NTP. How old is the mineral? As usual we define some constants first:

$$R := 0.08206 \cdot liter \cdot atm \cdot mole^{-1} \cdot K^{-1}$$
 $N_A := 6.022 \cdot 10^{23} \cdot mole^{-1}$

$$Mw_{K} = 39.10 \cdot \frac{gm}{mole}$$
 $Mw_{Ar} = 40 \cdot \frac{gm}{mole}$

Then use the half-life from Table 5.2 to compute the decay constant, λ , as follows:

$$t_{half} = 1.28 \cdot 10^9 \cdot yr$$
 $\lambda = \frac{ln(2)}{t_{half}}$

NTP corresponds to:
$$T := 273.15 \cdot K$$
 $p := 1 \cdot atm$ $V_{Ar} := 87.2 \cdot 10^{-6} \cdot liter$

From the known amount of potassium and the atomic fraction of 40 K we can calculate the total number of 40 K atoms, $N_{\rm K40}$:

$$m_{K} := 39.1 \cdot gm$$
 $N_{K} := \frac{m_{K}}{Mw_{K}} \cdot N_{A}$ $x_{40K} := 0.0117 \cdot \%$ $N_{K40} := N_{K} x_{40K}$

Then we can calculate the number of argon atoms, N_{Ar} , by using the general gas-law:

$$n_{Ar} = \frac{V_{Ar} p}{R \cdot T}$$
 $N_{Ar} = n_{Ar} N_A$

However, as argon was formed by decay of $^{40}{\rm K}$ we can assume that as many $^{40}{\rm K}$ atoms have decayed as the number of argon atoms found:

$$dN_{K} := \frac{N_{Ar}}{0.1067}$$

Now it is possible to calculate the time (age) from eqn. (4.41a):

$$t := \frac{ln\left(\frac{dN_K}{N_{K40}} + 1\right)}{\lambda}$$

$$t = 1.581 \cdot 10^{16} \cdot \text{sec} \qquad \text{or} \qquad t = 5.01 \cdot 10^8 \cdot yr$$