(5.6) A mineral was found to contain 39.1 g K and $87.2^{*} 10^{-6}$ liter Ar at NTP. How old is the mineral? As usual we define some constants first:
$R:=0.08206 \cdot$ liter $\cdot \mathrm{atm} \cdot$ mole ${ }^{-1} \cdot K^{1} \quad N_{A}:=6.022 \cdot 10^{23} \cdot$ mole $^{-1}$
$M w_{K}:=39.10 \cdot \frac{\mathrm{gm}}{\mathrm{mole}}$

$$
M w_{A r}:=40 \cdot \frac{g m}{\text { mole }}
$$

Then use the half-life from Table 5.2 to compute the decay constant, λ, as follows:
$t_{\text {half }}:=1.28 \cdot 10^{9} \cdot y r \quad \lambda:=\frac{\ln (2)}{t_{\text {half }}}$
NTP corresponds to: $\quad T:=273.15 \cdot \mathrm{~K} \quad \mathrm{~K}:=1 \cdot \mathrm{~atm} \quad V_{\text {Ar }}:=87.2 \cdot 10^{-6} \cdot$ liter
From the known amount of potassium and the atomic fraction of 40 K we can calculate the total number of ${ }^{40} \mathrm{~K}$ atoms, $N_{\mathrm{K} 40}$:
$m_{K}:=39.1 \cdot g m \quad N_{K}:=\frac{m_{K}}{M w_{K}} \cdot N_{A} \quad x_{40 K}:=0.0117 \cdot \% \quad N_{K 40}:=N_{K} x_{40 K}$
Then we can calculate the number of argon atoms, $N_{\text {Ar }}$, by using the general gas-law:
$n_{A r}:=\frac{V_{A r} \cdot p}{R \cdot T} \quad N_{A r}:=n_{\operatorname{Ar}} N_{A}$
However, as argon was formed by decay of 40 K we can assume that as many 40 K atoms have decayed as the number of argon atoms found:
$d N_{K}:=\frac{N_{A r}}{0.1067}$
Now it is possible to calculate the time (age) from eqn. (4.41a):
$t:=\frac{\ln \left(\frac{d N_{K}}{N_{K 40}}+1\right)}{\lambda}$

$$
t=1.581 \cdot 10^{16} \cdot \mathrm{sec} \quad \text { or } \quad t=5.01 \cdot 10^{8} \cdot y r
$$

