(6.6) What is the γ -ray flux from a 3.7 GBq ⁶⁰Co source at a distance of 3 m? Assume $\psi_{sample}=1$.

Note that each decay gives a cascade of two γ :s.

Begin as usual to define 1 Bq:

 $Bq := sec^{-1}$

The decay rate (source strength) is given as:

 $R_{source} = 3.7 \cdot 10^9 \cdot Bq$ (=3.7 GBq)

and the γ emission rate is twice the decay rate (ψ_{sample} =1):

 $I_{\gamma} := 2 \cdot R_{\text{source}} \qquad \gamma/\text{s}$

The distance from the centre of the source is:

r ≔ 3·*m*

As all emitted radiation has to pass through the surface of a surrounding sphere with a 3 m radius we get the average flux as the total number of emitted particles per unit time divided by the surface area:

Area := $4 \cdot \pi \cdot r^2$

$$\phi := \frac{I_{\gamma}}{Area} \qquad \phi = 6.543 \cdot 10^7 \cdot \text{m}^{-2} \cdot \text{sec}^{-1}$$

or
$$\phi = 6.543 \cdot 10^3 \cdot cm^{-2} \cdot sec^{-1}$$