(6.7) What is the maximum range in millimeters of β -particles from T, ¹⁴C, ³²P and ⁹⁰Sr in a photographic film if its absorption efficiency is assumed to be the same as aluminum? The density of the emulsion is assumed to be 1.5 g cm⁻³.

$$eV := 1.60217733 \cdot 10^{-19} \cdot joule$$
 $MeV := 10^{6} \cdot eV$

 $\rho = 1.5 \cdot \frac{gm}{cm^3}$ The density is common for all the partial questions.

T (=
3
H): $E_{max} = 0.018 \cdot MeV$

$$R_{\beta} := 8.10^{-4} \cdot \frac{gm}{cm^2}$$
 (from Fig. 6.12) $R_{max} := \frac{R_{\beta}}{\rho}$ $R_{max} = 5.333 \cdot 10^{-6} \cdot m$

¹⁴C:
$$E_{max} = 0.2 \cdot MeV$$

$$R_{\beta} := 4 \cdot 10^{-2} \cdot \frac{gm}{cm^2}$$
 (from Fig. 6.12) $R_{max} := \frac{R_{\beta}}{\rho}$ $R_{max} = 0.267 \cdot mm$

32P:
$$E_{max} = 1.71 \cdot MeV$$

$$R_{\beta} = 0.8 \cdot \frac{gm}{cm^2}$$
 (from Fig. 6.12) $R_{max} = \frac{R_{\beta}}{\rho}$ $R_{max} = 5.333 \cdot mm$

90Sr:
$$E_{max} = 0.544 \cdot MeV$$

$$R_{\beta} = 0.17 \cdot \frac{gm}{cm^2}$$
 (from Fig. 6.12) $R_{max} = \frac{R_{\beta}}{\rho}$ $R_{max} = 1.133 \cdot mm$