(6.9) In a laboratory an irradiation area must be designed for γ-radiography using a $0.37 \mathrm{TBq}{ }^{60} \mathrm{Co}$ source. For this purpose a cubic building is erected with an interior side length of 2 m . The desired flux reduction is 10^{6}. How thick must the wall be and how much will the shielding material cost (i.e. not including labor costs) if it is made of (a) concrete? (b) lead ? Assume lead blocks cost $\$ 1.50$ per kg and concrete $\$ 40$ per m^{3}.

From Fig. 6.15 and $E_{\gamma} 1.17$ and 1.33 ; average 1.25 MeV , the thickness $d_{\text {concrete }}$ is obtained as:
$d_{\text {concrete }}:=133 \cdot 10^{-2} \cdot \mathrm{~m}$
The concrete volume is calculated as the difference in volume between a massive cube and a hollow cube having outer dimension = inner dimension + wall thickness.

Volume $:=\left(2 \cdot m+2 \cdot d_{\text {concrete }}\right)^{3}-(2 \cdot m)^{3} \quad$ Volume $=93.195 \cdot \mathrm{~m}^{3}$
Unitcost $:=40 \cdot m^{-3} \quad$ in $\$ / m^{3}$
Cost $:=$ Volume. Unitcost

$$
\text { Cost }=3.728 \cdot 10^{3}
$$

\$ for concrete

From Fig. 6.17 we can read the total attenuation coefficient for lead as $\mu=0.059 \mathrm{~cm}^{2} / \mathrm{g}$ at 1.25 MeV :

$$
\rho_{P b}:=11.3 \cdot \frac{\mathrm{gm}}{\mathrm{~cm}^{3}} \quad \quad \mu_{0}:=0.059 \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{gm}} \quad \quad \mu:=\mu_{o} \cdot \rho \rho b
$$

However, in this case we must also correct for scattered radiation by using the build-up factor, B, because the attenuation was measured on a collimated beam:

