(6.15) A swimming-pool reactor produces a flux of $3^{*}10^{16}$ thermal neutrons m⁻²s⁻¹ at 1 m from the reactor center. Assuming a parallel beam of neutrons diffusing up to the surface of the pool where the neutron flux is measured to be 10^8 n m⁻²s⁻¹, calculate the thickness (*x* m) of the water layer required. For thermal neutrons the flux is reduced exponentially with the exponent x^*L^{-1} , where *L* is the diffusion length (2.75 cm in H₂O).

fluxdamping :=
$$\frac{10^8}{3 \cdot 10^{16}}$$
 fluxdamping = $3.333 \cdot 10^{-9}$
L := 2.75 · cm
 $\phi = \phi_0 \cdot exp\left(\frac{-x}{L}\right)$ fluxdamping = $exp\left(\frac{-x}{L}\right)$

x ≔ – In(fluxdamping) · L

x = 0.537∙m