(6.16) In a sample of 10.4 TBq of old fission products, the average γ -ray energy is 0.5 MeV and on the average 0.4 γ 's are emitted per β -decay. (a) What is the lead shielding required to reduce the γ -flux to $10^2 \gamma$ cm⁻²s⁻¹ at 1.5 m from the source assuming only exponential absorption? (b) What is the relaxation length? (c) What is the build-up factor?

Solution: Because we will handle scattered radiation by the build-up factor the appropriate curve to use in Figure 6.17 (Lead) is the one labeled "Total Attenuation". At 0.5 MeV this gives a value of 0.15 cm²/gm for μ_{α}/ρ .

$Bq := sec^{-1}$	A ≔ 10.4·10 ¹² · <i>Bq</i>	<i>n</i> := 0.4	γ/β
ρ ≔ 11.3 <i>gm cm</i> ⁻³	$\mu_{o} \coloneqq 0.15 \cdot cm^2 \cdot gm^{-1}$	$\mu := \mu_{o} \cdot \rho$	
<i>r</i> ≔ 1.5·100· <i>cm</i>	$\phi \coloneqq 10^2 \cdot cm^{-2} \cdot sec^{-1}$	γ/cm ⁻² s ⁻¹	
$\boldsymbol{x} \coloneqq \frac{ln\left(\frac{\boldsymbol{n}\cdot\boldsymbol{A}}{\boldsymbol{4}\cdot\boldsymbol{\pi}\cdot\boldsymbol{r}^{2}\cdot\boldsymbol{\phi}}\right)}{\boldsymbol{\mu}}$	Derived from eqn. (6.26)		
(a) Shield thickness, <i>x</i> , i	is $x = 0.07 \cdot m$ or	<i>x</i> = 7.02 · <i>cm</i>	
(b) Relaxation length =	$\mu \cdot x = 11.899$		

(c) From Fig. 6.20; build-up factor = 2.5