(7.2) Estimate the fraction of energy lost through bremsstrahlung for a β -emission of E_{max} =2.3 MeV, when absorbed in aluminum. The decrease of particle energy as well as the continuos β -spectrum must be taken into account.

E _{max} := 2.3	$E_{average} \coloneqq \frac{E_{max}}{3}$	<i>E _{average} =</i> 0.767 MeV
Assume:	E _e ≔ E _{average}	
	dedx _{coll} := 1	Z = 13 For aluminum
	$dEdx_{brems} = E_e \cdot \frac{Z}{800} \cdot dedx_{coll}$	Eqn. (6.15)
Fraction lost (%):	P := $\frac{dEdx_{brems}}{dEdx_{brems} + dedx_{coll}}$	<i>P</i> = 0.012
		or
		<i>P</i> = 1.231 · %