(8.6) In a GM counter, sample A gave 12630, B 15480, and A+B together 25147 cpm . (a) What is the resolving time of the counter? With the same counter, the distribution of radioactive samarium between an organic phase and water was measured according to $D_{\mathrm{m}}=R_{\mathrm{org}} / R_{\mathrm{aq}}$. The measured R_{org} is 37160 cpm , and that of R_{aq} is 2965. (b)What is the measured D_{m} ? (c) Using the corrections for the resolving time, what is the true D-value?

First some definitions of useful units:
$\mu s:=10^{-6} \cdot \sec \quad \quad \quad$ mm $:=\min ^{-1}$

Ignore the background count rate in calculating the dead-time. $\quad R_{0}:=0 \cdot \mathrm{cpm}$
$R_{A}:=12630 \cdot \mathrm{cpm} \quad R_{B}:=15480 \cdot \mathrm{cpm} \quad R_{A B}:=25147 \cdot \mathrm{cpm}$
$x:=R_{A} \cdot R_{B}{ }^{-} R_{A B} \cdot R_{0} \quad y:=R_{A} \cdot R_{B} \cdot\left(R_{A B}+R_{0}\right)-R_{A B} \cdot R_{O} \cdot\left(R_{A}+R_{B}\right)$
$z:=y \cdot \frac{R_{A}+R_{B}-R_{A B}-R_{0}}{x^{2}} \quad t_{r}:=x \cdot \frac{1-\sqrt{1-z}}{y}$
(a) $t_{r}=5.089 \cdot 10^{-4} \cdot \mathrm{sec} \quad t_{r}=509 \cdot \mu \mathrm{~s}$
(b) $\quad R_{\text {org }}:=37160 \cdot \mathrm{cpm}$

$$
R_{\text {aq }}:=2965 \cdot \mathrm{cpm}
$$

$D:=\frac{R_{\text {org }}}{R_{\text {aq }}}$

$$
D=12.53
$$

(c) $\quad R_{\text {orgcorr }}:=\frac{R_{\text {org }}}{1-R_{\text {org }} t_{r}}$
$R_{\text {aqcorr }}:=\frac{R_{\text {aq }}}{\left(1-R_{a q^{\cdot}} t_{r}\right)}$
$D_{\text {corr }}:=\frac{R_{\text {orgcorr }}}{R_{\text {aqcorr }}}$

$$
D_{\text {corr }}=17.84
$$

