(9.2) A mixture of amino acids is to be assayed for systeine. A 1.0 ml sample (density 1 g ml⁻¹) is withdrawn, and 2.61 mg of ³²S labeled cysteine of specific activity 0.862 μ Ci mg⁻¹ is added. From this mixture pure cysteine is isolated by liquid-partition chromatography; 30.6 mg is isolated and measured to give 169000 cpm in 27% detection efficiency. What is the percentage of cysteine in the original mixture?

First the normal definitions:

$$Bq := sec^{-1}$$
 $cpm := min^{-1}$ $Ci := 3.7 \cdot 10^{10} \cdot Bq$

Then the data given in the text; assume density of blood is about the same as water:

$$v$$
 sample := 1.0·mL ρ sample := 1 $\cdot \frac{gm}{mL}$ m sample := v sample ρ sample m_{syst} := 2.61·mg S_{syst} := 0.862·10⁻⁶·Ci·mg⁻¹ S_{syst} = 3.189·10⁷ $\cdot \frac{Bq}{gm}$ m_{isol} := 30.6·mg R_{isol} := 169000·cpm ψ := 27·%

From these data calculate as follows (neglect the added amount):

$$A_{isol} := \frac{R_{isol}}{\psi} \qquad S_{isol} := \frac{A_{isol}}{m_{isol}} \qquad S_{isol} = 3.409 \cdot 10^5 \cdot \frac{Bq}{gm}$$
Use eqn. $S_0^* m_0 = S_x^* m_x \qquad m_x := \frac{S_{syst} m_{syst}}{m_x} \qquad m_x = 2.442 \cdot 10^{-4} \cdot \text{kg} \qquad \text{or} \qquad m_x = 244 \cdot mg$

 $P_{cyst} = \frac{m_X}{m_{sample}} \qquad P_{cyst} = 0.244 \qquad \text{or} \qquad P_{cyst} = 24.4210 \quad \text{kg} \qquad \text{or} \qquad m_X = 2.44210 \quad \text{or} \qquad m_X = 2.44100 \quad \text{or} \qquad m_X = 2.44100 \quad \text{or} \qquad m_X = 2.41000 \quad \text{or} \qquad m_X = 2.41000 \quad \text{or} \qquad m_X = 2.4100$