(9.4) What is the smallest amount of indium which can be determined in a 100 mg aluminum sample using NAA with a neutron flux of 10^{16} n m-2 s-1? Consider neutron captures in 27 Al and 115 In (95.7% of In): 115 In(n, γ) 116 In (σ 45 b, $t_{\frac{1}{2}}$ 14 s) and 27 Al(n, γ) 28 Al (σ 0.23 b, $t_{\frac{1}{2}}$ 2.46 min.) The lowest detectable activity of 116 In is assumed to be 10 Bq, and the interference from 28 Al not more than 20%.

First the standard definitions:

$$Bq := sec^{-1}$$
 $N_A := 6.022 \cdot 10^{23} \cdot mole^{-1}$

then the data given in the text:

$$m_{tot} := 100 \cdot 10^{-3} \cdot gm$$
 $\phi := 10^{16} \cdot m^{-2} \cdot sec^{-1}$ $\sigma_{27AI} := 0.23 \cdot 10^{-28} \cdot m^{2}$ $\sigma_{115In} := 45 \cdot 10^{-28} \cdot m^{2}$ $R_{116In} := 10 \cdot Bq$ $R_{28AI} := \frac{20}{100} \cdot R_{116In}$ $t_{half116In} := 14 \cdot sec$ $t_{half28AI} := 2.46 \cdot 60 \cdot sec$ $\lambda_{116In} := \frac{In(2)}{t_{half116In}}$ $\lambda_{28AI} := \frac{In(2)}{t_{half28AI}}$

 $m_{27AI} = m_{tot}$ Neglect the small amount of In

$$M_{WAI} := 26.98 \cdot \frac{gm}{mole}$$
 $M_{WIn} := 114.82 \cdot \frac{gm}{mole}$ $x_{In} := \frac{95.7}{100}$

Compute the irradiation time from the requirement that ²⁸Al activity is = 20% of ¹¹⁶In activity.

Then compute the amount of In from the required activity.

$$N_{115ln} := \frac{R_{116ln}}{\phi \cdot \sigma_{115ln} \cdot \left(1 - \exp(-\lambda_{116ln} \cdot t_{irr})\right)}$$

$$N_{115ln} = 5.41 \cdot 10^{18}$$

$$m_{ln} := N_{115ln} \cdot \frac{M_{wln}}{N_{A} \cdot x_{ln}}$$

$$m_{ln} = 1.078 \cdot 10^{-6} \cdot \text{kg}$$

$$\frac{m_{ln}}{m_{tot}} = 1.078 \cdot \%$$

Comment: the irradiation time becomes unrealistically short at the minimum detectable activity and the sensitivity is practically constant up to near 1 second irradiation time, see next page. Thus it is more reasonable to assume 10⁷Bq of ¹¹⁶In and calculate a new irradiation time:

$$R_{116In} := 10^{7} \cdot Bq \qquad R_{28AI} := \frac{20}{100} \cdot R_{116In}$$

$$-In \left(1 - \frac{R_{28AI}}{\phi \cdot \sigma_{27AI} N_{27AI}}\right) \qquad \text{This is a practically achievable irradiation time with a rapid rabbit system.}$$

$$t_{irr} := \frac{10^{7} \cdot Bq}{100} \qquad t_{irr} = 0.831 \cdot sec \qquad \text{continued on next page}$$

$$N_{115ln} = \frac{R_{116ln}}{\phi \cdot \sigma_{115ln} \cdot \left(1 - \exp(-\lambda_{116ln} \cdot t_{irr})\right)}$$

$$N_{115ln} = 5.512 \cdot 10^{18}$$

$$m_{ln} = N_{115ln} \cdot \frac{M_{wln}}{N_{A} \cdot x_{ln}}$$

$$m_{ln} = 1.098 \cdot 10^{-6} \cdot \text{kg}$$

$$\frac{m_{ln}}{m_{tot}} = 1.098 \cdot \%$$

i := 1..9

The sensitivity is only marginally worse, but the irratiation time is long enough to be practical.

$$R_{ln_i} = 10^i$$

R In _i	MDA _i :=	t _i :=
10	1.078	8.296·10 ⁻⁷
100	1.078	8.296·10 ⁻⁶
1· 10 ³	1.078	_
	1.078	$8.296 \cdot 10^{-5}$
1.104	1.078	8.296·10 ⁻⁴
1· 10 ⁵	1.08	0.008
1· 10 ⁶	1.098	0.083
1· 10 ⁷	1.294	0.831
	4.452	8.462
1· 10 ⁸		105.112
1· 10 ⁹		

MDA = Minimum Detectable Amount (%) R = Indium activity (Bq) t = Irradiation time (s)

We can now obtain the smallest detectable amount in a 100 mg sample as follows:

$$m_{sample} := 100 \cdot mg$$
 $mdm := m_{sample} \cdot \frac{m_{ln}}{m_{tot}}$ $mdm = 1.1 \cdot mg$