(9.7) A sodium iodide solution contains some radioactive ¹³¹I. An ethanol solution was prepared containing 0.135 M of this sodium iodide and 0.910 M inactive C_2H_5I . In the exchange reaction

$$C_2H_5I + {}^{129}I^- = C_2H_5{}^{129}I + I^-$$

the reaction rate constant is assume to be the same in both directions: $k_f = k_f$. One part (a) of the solution was removed and heated to high temperature so that equilibrium was rapidly reached. Another part (B) was kept in a thermostated bath at 30°C. After 50 min ethyl iodide was separated from both solutions. The concentration of radioactive iodine in C_2H_5I in B was found to be only 64.7% of that in A. Calculate k ($k_f = k$ a b in §9.4.2).

Page 260. $a=(AX)+(AX^*)$ $b=(BX)+(BX^*)$ $x=(AX^*)$ $y=(BX^*)$ $F=x_l/x_{inf}$ $\ln(1-F)=-k_l^*i^*(a+b)/(a^*b)$

$$k_r := -\frac{lf}{t \cdot \frac{a+b}{a \cdot b}}$$
 $k := \frac{k_r}{a \cdot b}$ $k = 3.32 \cdot 10^{-4}$ s⁻¹ M⁻¹