(9.9) Calculate β_{4} and the distribution constant using (9.23a) and Figure 9.9.

Use lower curve because the upper one is for very high concentration in the organic phase.
Eqn. (9.23) $D_{M}=K_{D C}{ }^{*} \beta_{z}\left[\mathrm{~A}^{-}\right]^{z} / \Sigma \beta_{n}\left[\mathrm{~A}^{-}\right]^{n}$
$n_{\text {max }}$ in the sum must be 4 and $z=3$.
As a first approximation assume that the denominator is dominated by the term $\beta_{3}[A-]^{3}$ at the maximum D-value, i.e. $\log \left(D_{\mathrm{M}}\right)=0.1$ and $\mathrm{p} A=2.5$. In this point we then have $D_{\mathrm{M}}=K_{\mathrm{DC}}$, i.e. $K_{\mathrm{DC}}=10^{0.1}$.

At the highest $p A$ values the denominator is dominated by the first term in the sum, i.e. $\beta_{0}[A-]^{0}=1$ per definition as $\beta_{0}=1$. Then we can approximate $D_{M}=K_{\mathrm{DC}}{ }^{*} \beta_{3}[A-]^{3}$ at $\mathrm{p} A=6.25$ and $\log \left(D_{\mathrm{M}}\right)=-5$. This permits us to calculate β_{3}.

Thus the following procedure yields first approximations for $K_{D C}$ and β_{4} that can be used as starting values for a least squares refinement.

At the maximum of the curve:

$$
\log D_{M}:=0.1 \quad K_{D C}:=10^{\log D} M \quad K_{D C}=1.259
$$

At $p A=6.25$:
$p A:=6.25$

$$
A:=10^{-p A}
$$

$$
A=5.623 \cdot 10^{-7}
$$

$\log _{M}:=-5$

$$
D_{M}:=10^{\log D_{M}}
$$

$$
D_{M}=1 \cdot 10^{-5}
$$

$D_{M}=K_{D C} \cdot \beta_{3} \cdot A^{3}$ $\beta_{3}:=\frac{D_{M}}{K_{D C} \cdot A^{3}}$

$$
\beta_{3}=4.467 \cdot 10^{13}
$$

$$
\log \left(\beta_{3}\right)=13.65
$$

At $\mathrm{p} A=0.5$:

$$
\begin{array}{lll}
p A:=0.5 & A:=10^{-p A} & A=0.316 \\
\log D_{M}:=-1.1 & D_{M}:=10^{\log D} M & D_{M}=0.079 \\
D_{M}=\frac{K_{D C} \cdot \beta_{3} \cdot A^{3}}{\beta_{3} \cdot A^{3}+\beta_{4} \cdot A^{4}} & \beta_{4}:=\frac{\beta_{3} \cdot\left(K_{D C}-D_{M}\right)}{D_{M^{A}}} & \beta_{4}=2.097 \cdot 10^{15} \\
& & \log \left(\beta_{4}\right)=15.32
\end{array}
$$

