(9.9) Calculate β_4 and the distribution constant using (9.23a) and Figure 9.9.

Use lower curve because the upper one is for very high concentration in the organic phase.

Eqn. (9.23)
$$D_{\text{M}} = K_{\text{DC}} {}^*\beta_z [\text{A}^-]^z / \Sigma \beta_n [\text{A}^-]^n$$

 n_{max} in the sum must be 4 and z = 3.

As a first approximation assume that the denominator is dominated by the term β_3 [A⁻]³ at the maximum *D*-value, i.e. log(D_M)=0.1 and p*A* = 2.5. In this point we then have $D_M = K_{DC}$, i.e. K_{DC} =10^{0.1}.

At the highest pA values the denominator is dominated by the first term in the sum, i.e. $\beta_0[A-]^0 = 1$ per definition as $\beta_0=1$. Then we can approximate $D_M = K_{DC} * \beta_3[A-]^3$ at pA = 6.25 and log(D_M)=-5. This permits us to calculate β_3 .

Thus the following procedure yields first approximations for K_{DC} and β_4 that can be used as starting values for a least squares refinement.

 $log(\beta_{4}) = 15.32$

At the maximum of the curve:

<i>logD</i> _M := 0.1	$K_{DC} = 10^{\log D_M}$	К _{DC} = 1.259
At <i>pA</i> =6.25:		
<i>pA</i> := 6.25	$A := 10^{-pA}$	$A = 5.623 \cdot 10^{-7}$
<i>logD</i> _M := -5	$D_M = 10^{\log D_M}$	$D_{M} = 1 \cdot 10^{-5}$
$D_{M} = K_{DC} \cdot \beta_{3} \cdot A^{3}$	$\beta_3 := \frac{D_M}{\kappa_{DC} A^3}$	$\beta_3 = 4.467 \cdot 10^{13}$ $log(\beta_3) = 13.65$
At p <i>A</i> =0.5:		(-)
<i>pA</i> := 0.5	$A := 10^{-pA}$	A = 0.316
<i>logD</i> _M := -1.1	$D_M = 10^{\log D_M}$	D _M = 0.079
$D_{M} = \frac{\kappa_{DC} \beta_{3} A^{3}}{\beta_{3} A^{3} + \beta_{4} A^{4}}$	$\beta_{4} := \frac{\beta_{3} (\kappa_{DC} - D_{M})}{D_{M}A}$	$\beta_4 = 2.097 \cdot 10^{15}$