(9.10) One wants to determine the residual liquid volume of a closed sedimentation tank (nominal volume $80 \mathrm{~m}^{3}$), which has been in use for many years, and in which CaSO_{4} precipitates. 0.50 ml ${ }^{24} \mathrm{Na}_{2} \mathrm{SO}_{4}$ (specific activity $3.2^{\star} 10^{8} \mathrm{cpm} \mathrm{ml}-1$) is added to the tank, and 10 ml withdrawn after 2 h of settling; measurements yield a net value (background subtracted) of 500 counts in 10 min . Calculate the free volume in the tank.

$$
\begin{array}{lll}
\text { Use relation } V_{0}{ }^{*} S_{0}=\left(V+V_{0}\right)^{*} S: & V_{0}:=0.5 \cdot m L & S_{0}:=3.2 \cdot 10^{8} \cdot \mathrm{~min}^{-1} \cdot m L^{-1} \\
t_{m}:=10 \cdot \mathrm{~min} & N_{m}:=500 & \text { counts }
\end{array} V_{m}:=10 \cdot \mathrm{~mL}
$$

$R_{m}:=\frac{N_{m}}{t_{m}} \quad \begin{aligned} & \text { This value must be decay-corrected back } 2 \text { hours, assuming measurement } \\ & \text { shortly after withdrawal of sample. }\end{aligned}$
$t_{\text {half }}:=14.96 \cdot h r \quad \Delta t:=2 \cdot h r \quad A:=R_{m} \cdot 2^{\frac{\Delta t}{t^{t h a l f}}}$
$S:=\frac{A}{v_{m}} \quad S=9.142 \cdot 10^{4} \cdot \mathrm{~m}^{-3} \cdot \mathrm{sec}^{-1} \quad V:=\frac{V_{0} \cdot S_{0}}{S} \quad V=29 \cdot \mathrm{~m}^{3}$
Remember: In cases where V_{0} can not be neglected in comparison with V we should use:
$V=\frac{V_{0}\left(S_{0}-S\right)}{S}$

