(11.8) The observed quadrupole moment of ⁵⁹Co is 0.40 barn. (a) What is the deformation value β ? (b) What spin value is expected from the Nilsson diagram?

(a) $Q_{obs} = Q^*(I-1/2)/(I+1)$, $Q = 2^*Z^*(a^2-c^2)/5$ and $\beta = 2^*(a-c)/(a+c)$: Dimension of Q_{obs} is m².

$$Q_{obs} = 0.40 \cdot 10^{-28} \cdot m^2$$
 $Q_{obs} = 4 \cdot 10^{-29} \cdot m^2$ $I = \frac{7}{2}$ $Q = Q_{obs} \cdot \frac{I+1}{I-\frac{1}{2}}$ $Z = 27$

We will use the identity: $(a-c)/(a+c)=(a^2-c^2)/(a+c)^2$, and then approximate (a+c) by 2^*r_{average} .

$$Q = 6 \cdot 10^{-29} \cdot m^2$$
 $a2mc2 := \frac{5}{2} \cdot \frac{Q}{Z}$ $a2mc2 = 5.556 \cdot 10^{-30} \cdot m^2$ $A := 59$

$$r_0 := 1.3 \cdot 10^{-15} \cdot m$$
 apc := $2 \cdot r_0 \cdot A^{\frac{1}{3}}$ $\beta := 2 \cdot \frac{a2mc2}{apc^2}$ $\beta = 0.108$

(b) We have an odd proton as number 27. Then Fig. 11.8 indicates spin 7/2.