(12.1) (a) What kinetic energy must be given to a helium atom in order to increase its mass by 1%? (b) What are the mean velocity and the mean kinetic energy of a helium atom at STP?

First a definition of eV:

(a) Eqn. (12.7) can be rewritten as $E_{\rm kin}=(m-m^0)^*{\bf c}^2$ by using (12.5) and (12.6). If we convert to the amu scale the eqn. becomes $E_{\rm kin}=931.5^*\Delta M$ for $E_{\rm kin}$ in MeV and ΔM in u.

$$\Delta M := \frac{1}{100} \cdot 4.002603$$

 $\Delta M := \frac{1}{100} \cdot 4.002603$ This is 1% of the rest mass of a helium atom.

$$E_{kin} = 931.5 \cdot \Delta M$$
 $E_{kin} = 37.3$

$$E_{kin} = 37.3$$

MeV

(b) From eqns (2.21) and (2.24) we obtain:

$$k := 1.38066 \cdot 10^{-23} \cdot \frac{joule}{K}$$
 $T := 273.15 \cdot K$

$$T := 273.15 \cdot K$$

$$E_{mean} := \frac{3 \cdot k \cdot T}{2}$$

$$E_{mean} = \frac{3 \cdot k \cdot T}{2}$$
 $E_{mean} = 5.657 \cdot 10^{-21} \cdot joule$ or $E_{mean} = 0.035 \cdot eV$

or
$$E_{mean} = 0.035 \cdot eV$$

$$m_{He} = 4.002603 \cdot 1.660540 \cdot 10^{-27} \cdot kg$$

$$v_{mean} = \sqrt{\frac{2 \cdot E_{mean}}{m_{He}}}$$

$$v_{mean} = 1305 \cdot \text{m} \cdot \text{sec}^{-1}$$