(12.2) Calculate the distance of closest approach for $5 \mathrm{MeV} \alpha$-particles to a gold target.

Constants and units:
$\begin{array}{ll}f m:=10^{-15} \cdot m & M e V:=1.60217733 \cdot 10^{-13} \cdot \text { joule } \\ \varepsilon_{0}:=8.8541878 \cdot 10^{-12} \cdot \frac{\text { coul }}{\text { volt } \cdot \mathrm{m}} & q_{e}:=1.6021773 \cdot 10^{-19} \cdot \text { coul } \quad u_{n}:=1.660540 \cdot 10^{-27} \cdot \mathrm{~kg}\end{array}$
Given data from the text:
$Z_{\alpha}:=2 \quad Z_{A u}:=79 \quad A_{A u}:=197$

Calculations:
$k:=\frac{1}{4 \cdot \pi \cdot \varepsilon} 0$
$m_{\alpha}:=\left(4.002603-2 \cdot 5.4857990 \cdot 10^{-4}\right) \cdot u_{n} \quad$ mass of He without two electrons
$m_{A u}:=196.97 \cdot u_{n}$
$E_{\alpha}:=5 \cdot \mathrm{MeV}$
$E_{\alpha}=8.011 \cdot 10^{-13} \cdot$ joule
$E_{C M}:=\frac{E_{\alpha} \cdot m^{A u}}{\left(m_{\alpha}+m^{\prime} A u\right)}$
Center-of-mass energy which can be derived from (4.3), (4.4), assuming $E_{\mathrm{kin}}=m^{*} v^{2} / 2$.
$r_{C}:=\frac{k \cdot Z_{A u} \cdot Z_{\alpha} \cdot q_{e}}{E_{C M}}$ Eqn. (12.13) solved for r_{c}
$r_{C}=4.6 \cdot 10^{-14} \cdot m$

$$
r_{c}=46.4 \cdot f m
$$

A simple derivation of the CM-energy equation for a projectile p and a target A is as follows:

Begin with the conservation of linear momentum:

$$
\begin{aligned}
& m_{p} \cdot v_{p}=\left(m_{p}+m_{A}\right) \cdot v_{C M} \\
& \frac{\left(m_{p} \cdot v_{p}\right)^{2}}{2}=\frac{\left[\left(m_{p}+m_{A}\right) \cdot v_{C M}\right]^{2}}{2} \\
& m_{p} \cdot E_{p}=\left(m_{p}+m_{A}\right) \cdot E_{C M} \\
& E_{C M}=E_{p} \cdot \frac{m_{p}}{m_{p}+m_{a}}
\end{aligned}
$$

Then square this equation and divide both sides by 2 to convert momentum into kinetic energy:

