(12.3) In a Rutherford scattering experiment 2D atoms of 150 keV are used to bombard a thin 58 Ni foil having a surface density of $67^{*} 10^{-6} \mathrm{~g} \mathrm{~cm}-2$. The detector subtends a solid angle of $1.12^{*} 10^{-4} \mathrm{sr}$ and detects 4816 deuterons out of a total of $1.88^{* 1012}$ incident on target. Calculate (a) the differential crosssection (in barns). (b) What is the distance between target and the solid state detector, which has a surface area of $0.2 \mathrm{~cm}^{2}$?
(a) Use eqn (12.18) and $N_{\mathrm{v}}{ }^{*} x=x^{*} \rho^{*} \boldsymbol{N}_{\mathrm{A}} / M$, where $x^{*} \rho$ is the surface density.

$$
\begin{array}{ll}
M:=58 \cdot 10^{-3} \cdot \frac{\mathrm{~kg}}{\mathrm{~mole}} & N_{A}:=6.022 \cdot 10^{23} \cdot \mathrm{~mole}^{-1} \quad x \rho:=67 \cdot 10^{-6} \cdot 10^{4} \cdot 10^{-3} \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-2} \\
x N_{v}:=x \rho \cdot \frac{N_{A}}{M} & x N_{v}=6.956 \cdot 10^{21} \cdot \mathrm{~m}^{-2} \\
n:=4816 & n_{0}:=1.88 \cdot 10^{12} \\
d \sigma d \Omega:=\frac{n}{n_{0} \cdot x N_{v} \cdot \Delta \Omega} & d \sigma d \Omega=3.288 \cdot 10^{-27} \cdot \mathrm{~m}^{2} \\
& \text { or } \frac{3.288 \cdot 10^{-27}}{10^{-28}}=32.9 \quad \Delta \Omega:=1.12 \cdot 10^{-4}
\end{array}
$$

(b) Use eqn (12.19) to calculate distance r :

$$
A_{d}:=0.2 \cdot 10^{-4} \cdot m^{2} \quad r:=\sqrt{\frac{A_{d}}{\Delta \Omega}} \quad r=0.423 \cdot \mathrm{~m} \quad \text { or } \quad r=42.258 \cdot \mathrm{~cm}
$$

