(12.10) Measurements made on the products of the reaction $^7\text{Li}(d,\alpha)^5\text{He}$ have led to an isotopic mass of 5.0122 for the hypothetical nuclide ^5He . Show that this nuclear configuration cannot be stable by considering the reaction $^5\text{He} = ^4\text{He} + \text{n}$.

Constants, units, and known values:

$$amu := 1.6605402 \cdot 10^{-27} \cdot kg$$
 $MeV := 1.60217733 \cdot 10^{-13} \cdot joule$

$$M_{5He} := 5.0122 \cdot amu$$
 $M_{4He} := 4.002603 \cdot amu$ $M_{n} := 1.00866490 \cdot amu$

Calculations:

$$Q := -931.5 \cdot \frac{MeV}{amu} \cdot \left(M_{4He} + M_{n} - M_{5He} \right)$$

$$Q = 0.87 \cdot MeV$$

Hence, the given reaction is exoergic and must be spontaneous and rapid as there is no potential barrier for emission of neutrons.