(13.1) In a small linear accelerator containing 30 stages, He^{2+} ions are accelerated by a 150 kV , 100 MHz RF source. The ions are used to bombard a metal target to induce a specific reaction. (a) What is the proper length of the last drift tube? (b) What is the maximum projectile energy achieved? (c) What is the heaviest target in which a nuclear transformation can be induced (no tunneling)?

Basic definitions of units and constants:
$q_{e}:=1.6021773 \cdot 10^{-19} \cdot$ coul $\quad c_{\text {light }}:=299792458 \cdot m \cdot \sec ^{-1} \quad \mathrm{MeV}:=1.60217733 \cdot 10^{-13}$. joule
$a m u:=1.6605402 \cdot 10^{-27} \cdot \mathrm{~kg} \quad N_{A}:=6.0221367 \cdot 10^{23} \cdot \mathrm{~mole}^{-1} \quad \mathrm{kV}:=1000 \cdot$ volt
$M_{e}:=5.485799 \cdot 10^{-4} \cdot \frac{\mathrm{gm}}{\mathrm{mole}} \quad M_{\mathrm{He}}:=4.002603 \cdot \frac{\mathrm{gm}}{\mathrm{mole}}$
Data for the accelerator:
$E_{\text {acc }}:=150 \cdot \mathrm{kV}$
$n_{\text {stages }}:=30$
$z:=2$
$f_{R F}:=100 \cdot M H z$
$\lambda:=\frac{c_{\text {light }}}{f_{R F}}$
$m_{0}:=\frac{M_{H e^{-z}} \cdot M_{e}}{N_{A}}$
$m_{0}=6.645 \cdot 10^{-27} \cdot \mathrm{~kg}$

Calculations:
(a) $k_{x}:=\frac{q_{e} \cdot z \cdot E_{\text {acc }}}{m_{0} \cdot c_{\text {light }}{ }^{2}} \quad L_{30}:=\frac{\lambda}{2} \cdot \sqrt{1-\left(n_{\text {stages }} \cdot k_{x}+1\right)^{-2}} \quad L_{30}=10.4 \cdot \mathrm{~cm}$
(b) $E_{\text {proj }}:=n_{\text {stages }} \cdot E_{a c c} \cdot z \cdot q_{e} \quad E_{\text {proj }}=9 \cdot \mathrm{MeV}$
(c) $\quad A_{1}:=4 \quad Z_{1}:=2 \quad i:=1 . .8 \quad$ Make a Table of possible targets and test each value:

