(13.3) In order to propel a space vehicle to high velocities after its exit from the earth's gravitational pull, "ion rockets" might be used. These can be considered as simple accelerators for charged particles. The electroneutrality of the vehicle is conserved through emission of electrons from a hot filament. The gain in linear velocity Δv is given by the "rocket formula": $\Delta v=v_{\mathrm{e}} \ln \left(m_{\mathrm{Ro}} / m_{\mathrm{R}}\right)$, where v_{e} is the exhaust velocity and m_{Ro} and m_{R} are the initial and final mass of the vehicle respectively. (a) Calculate the propelling power for a rocket, which emits 10 keV protons at a current of 1 A . (b) What is the final velocity gain of such vehicle with 2000 kg initial mass after 1 year's operating time? (c) For the same net available power and operating time, as in (b), calculate the final velocity gain of a 2000 kg vehicle which emits $10 \mathrm{keV} \mathrm{Cs}{ }^{+}$ ions at a current of 1 A .

First the usual basic definitions of units and constants:
$q_{e}:=1.6021773 \cdot 10^{-19} \cdot$ coul $\quad N_{A}:=6.022137 \cdot 10^{23} \cdot$ mole $^{-1} \quad$ eV $:=1.6021773 \cdot 10^{-19} \cdot$ joule
The initial mass of the vehicle is: $m_{R o}:=2000 \cdot \mathrm{~kg}$
(a) $P_{\text {prop }}:=1 \cdot 10 \cdot 10^{3} \cdot$ watt \quad Basic physics: Current ${ }^{\star}$ Voltage $=$ Power $\quad P_{\text {prop }}=10 \cdot \mathrm{~kW}$
(b) $\quad M_{p}:=1.00727647 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}$
$m_{p}:=\frac{M_{p}}{N_{A}}$
$v_{e}:=\sqrt{2 \cdot \frac{E_{p}}{m_{p}}}$
$\Delta m:=\Delta m \Delta t \cdot t$
$m_{R}:=m_{R o}-\Delta m$
$I_{p}:=1 \cdot a m p$
$E_{p}:=10 \cdot 10^{3} \cdot \mathrm{eV}$
$\Delta m \Delta t:=\frac{I_{p}}{q_{e}} \cdot m_{p}$
$t:=365 \cdot 24 \cdot 60 \cdot 60 \cdot \mathrm{sec}$
$\Delta v:=v_{e} \cdot \ln \left(\frac{m_{R o}}{m_{R}}\right) \quad \Delta v=228 \cdot \mathrm{~m} \cdot \mathrm{sec}^{-1}$
(c) Because $P_{\text {prop }}$ is the same, l is the same

$$
\begin{array}{lll}
M_{C s}:=132.9 \cdot g m \cdot m_{0 l e}-1 & I_{C s}:=1 \cdot a m p & E_{C s}:=10 \cdot 10^{3} \cdot \mathrm{eV} \\
m_{C s}:=\frac{M_{C s}}{N_{A}} \quad v_{e}:=\sqrt{2 \cdot \frac{E_{C s}}{m_{C s}}} & \Delta m \Delta t:=\frac{I_{C s}}{q_{e}} \cdot m_{C s} & t:=365 \cdot 24 \cdot 60 \cdot 60 \cdot \mathrm{sec} \\
\Delta m:=\Delta m \Delta t \cdot t & m_{R}:=m_{R o}-\Delta m & \Delta v:=v_{e} \cdot \ln \left(\frac{m_{R o}}{m_{R}}\right)
\end{array} \Delta v=2646 \cdot \mathrm{~m} \cdot \mathrm{sec}^{-1}
$$

