(13.5) Protons are accelerated to 12 GeV in a synchrotron in which the bending magnets have a maximum field strength of 14.3 T . What is the radius of curvature of the proton orbit?

Begin be defining the units used etc.
$B_{\text {magn }}$: $14.3 \cdot$ tesla
$e V:=1.60217733 \cdot 10^{-19} \cdot$ joule $\quad m_{O p}:=1.672623 \cdot 10^{-27} \cdot \mathrm{~kg}$
$c_{\text {light }}:=299792458 \cdot m \cdot \sec ^{-1}$
$E_{p}:=12 \cdot 10^{9} \cdot \mathrm{eV}$
$q_{e}:=1.60217733 \cdot 10^{-19} \cdot$ coul

Because the high energy implies that the protons have a velocity which is not very small compared to the speed of light (see Fig. 4.2) we should first use eqn. (4.22) to convert energy to kinetic mass.
$\Delta m_{p}:=\frac{E_{p}}{c_{\text {light }}{ }^{2}} \quad m_{p}:=m_{O p}+\Delta m_{p} \quad m_{p}=2.306 \cdot 10^{-26} \cdot \mathrm{~kg}$
Then we use eqn (13.6) to calculate r.
$z:=1 \quad r:=\sqrt{\frac{E_{p} \cdot 2 \cdot m_{p}}{B m a g n^{2} \cdot q e^{2} \cdot z^{2}}} \quad r=4.11 \cdot \mathrm{~m}$

