(13.8) A thin Au target is irradiated with a beam of 800 MeV $^{16}\text{O}^{2}$ + ions during 2 hours. After the irradiaten a faraday cup (with current integrator) behind the target showed a total accumulated charge of 92.3 μ C. What was the average beam intensity (oxygen ions per second)? Consider charge-stripping in the target.

Definitions of units and constants:

$$q_e := 1.6021773 \cdot 10^{-19} \cdot coul$$
 $N_A := 6.022137 \cdot 10^{23} \cdot mole^{-1}$ $c_{light} := 299792458 \cdot m \cdot sec^{-1}$ $m_e := 9.109390 \cdot 10^{-31} \cdot kg$ $M_{16O} := 15.994915 \cdot gm \cdot mole^{-1}$ $MeV := 1.6021773 \cdot 10^{-13} \cdot joule$ $m_{OOion} := \frac{M_{16O}}{N_A} - 2 \cdot m_e$ The rest mass of $^{16O2+}$ ions

Then compute the mass of ¹⁶O²⁺ ions at 800 MeV kinetic energy by using eqn. (4.21)

$$E_{Oion} = 800 \cdot MeV$$
 $m_{Oion} = m_{OOion} + \frac{E_{Oion}}{c_{light}^2}$

Then use eqn (4.19) to compute β with $\beta = (v/c)^2$ and ν from $\nu = \beta *c$:

$$\beta := \sqrt{1 - \left(\frac{m_{OOion}}{m_{Oion}}\right)^2} \qquad \beta = 0.315 \qquad v_{Oion} := \beta \cdot c_{light}$$

When the velocity is known, we can use eqn. (13.2) to compute the effective charge after passage of the target foil:

$$Z := 8$$
 $k := 3.6 \cdot 10^6 \cdot m \cdot sec^{-1}$ $Q := 92.3 \cdot 10^{-6} \cdot coul$

$$z_{eff} := Z \cdot \left[1 + \left(\frac{v \cdot Oion}{k \cdot Z^{0.45}} \right)^{-1.67} \right]^{-0.6}$$

$$z_{eff} = 7.904$$

Once we know the effective average charge of an ion hitting the faraday cup, we can compute the number of ions per unit time as follows:

$$t_{irr} = 2 \cdot hr$$
 $I_{ion} = \frac{Q}{t_{irr} z_{eff} q_{e}}$ $I_{ion} = 1.01 \cdot 10^{10} \cdot sec^{-1}$