(13.10) A cyclotron can accelerate 4He2+-ions to 35 MeV. (a) What is its K-value? To what energy would it accelerate (b) ¹⁶O⁶⁺ and (c) ¹⁸O⁸⁺ ions?

Constants and units:

$$MeV := 1.60217733 \cdot 10^{-13} \cdot joule$$
 $A_{He} := 4$ $E_{He} := 35 \cdot MeV$ $z_{He} := 2$

Calculations:

$$K_{cyclo} = \frac{E_{He}}{A_{He}} \left(\frac{A_{He}}{z_{He}} \right)^2$$
 From eqn. (13.7)

(a)
$$K_{cyclo} = 35 \cdot MeV$$

(b)
$$A_O := 16$$
 $z_O := 6$ $E_O := A_O \cdot K_{cyclo} \cdot \left(\frac{z_O}{A_O}\right)^2$ $E_O = 78.75 \cdot MeV$

(b)
$$A_O := 16$$
 $z_O := 6$ $E_O := A_O \cdot K_{cyclo} \cdot \left(\frac{z_O}{A_O}\right)^2$ $E_O = 78.75 \cdot MeV$
(c) $A_O := 18$ $z_O := 8$ $E_O := A_O \cdot K_{cyclo} \cdot \left(\frac{z_O}{A_O}\right)^2$ $E_O = 124.4 \cdot MeV$