(14.3) A water-cooled copper foil (0.1 mm thick) is irradiated by the internal beam of a sector focused cyclotron with 1.2 mA H+ ions of 24 MeV for 90 min. The reaction 63 Cu(p,pn) 62 Cu occurs with a probability of 0.086 b. Copper consists to 69% of 63 Cu. The proton beam has a cross-section of only 15 mm². (a) How many 62 Cu atoms have been formed? (b) What fraction of the projectiles have reacted to form 62 Cu? (c) What cooling effect is required (kW) at the target? Constants, data, and units: $$N_A := 6.022137 \cdot 10^{23} \cdot mole^{-1}$$ $q_e := 1.6021773 \cdot 10^{-19} \cdot coul$ $\sigma_{Cu} := 0.086 \cdot 10^{-28} \cdot m^2$ $$M_{Cu} = 63.54 \cdot gm \cdot mole^{-1}$$ $x_{63Cu} = 69 \cdot \%$ density = 8.96 · $gm \cdot cm^{-3}$ Data for the current case: thickness := $$0.1 \cdot mm$$ $z := 1$ $I_p := 1.2 \cdot mA$ $t_{irr} := 90 \cdot min$ Calculations: $$N_{VX} := \frac{N_A \cdot density \cdot thickness \cdot x_{63Cu}}{M_{Cu}}$$ eqn. (14.5) $$\phi := \frac{I_p}{z \cdot q_e}$$ eqn. (13.3) $\phi = 7.49 \cdot 10^{15} \cdot \text{sec}^{-1}$ $$t_{half} = 9.74 \cdot min$$ $\lambda = \frac{ln(2)}{t_{half}}$ (a) $$N_{62Cu} := \frac{1}{\lambda} \cdot \phi \cdot \sigma_{Cu} \cdot N_{VX} \left(1 - \exp(-\lambda \cdot t_{irr}) \right)$$ eqn. (15.7) $N_{62Cu} = 3.18 \cdot 10^{14}$ **(b)** $$\Delta \phi := \phi \cdot \sigma_{CU} \cdot N_{VX}$$ fraction := $\frac{\Delta \phi}{\phi}$ fraction = $5.039 \cdot 10^{-5}$ fraction = $5.04 \cdot 10^{-3} \cdot \%$ $\frac{1}{fraction} = 19845$ (c) If we condider only the beam loss by the given reaction, the heating will be as follows: $$E_{proj} = 24 \cdot 10^6 \cdot 1.6021773 \cdot 10^{-19} \cdot joule$$ $$P_{heating} = \Delta \phi \cdot E_{proj}$$ $P_{heating} = 1.451 \cdot watt$ This is a lower bound for the heating power. If we assume all beam lost in the target we get an upper bound for the possible heating power: $$P_{max} = \phi \cdot E_{proj}$$ $P_{max} = 29 \cdot kW$