(18.1) "Reference man" consists of $18 \% \mathrm{C}, 66 \% \mathrm{H}_{2} \mathrm{O}, 0.2 \%$ of K per body weight. He may also have accumulated 10 pCi 226 Ra in the body; assume 0.3 decay for each of the following 5 daughters. Calculate for a body weight of 70 kg the number of radioactive decays per unit time from $3 \mathrm{H},{ }^{14} \mathrm{C}, 40 \mathrm{~K}$ and ${ }^{226}$ Ra. Assume 30 TU in water.

Units, constants and data:
$N_{A}:=6.022137 \cdot 10^{23} \cdot$ mole $^{-1} \quad B q:=\sec ^{-1}$ $k B q:=1000 \cdot B q$
$\rho_{\text {water }}:=1.0 \cdot \mathrm{gm} \cdot \mathrm{cm}^{-3} \quad T U:=118 \cdot \mathrm{~Bq} \cdot \mathrm{~m}^{-3}$ See §5.1.2 for definition
$m_{\text {water }}:=70 \cdot \frac{66}{100} \cdot \mathrm{~kg} \quad m_{\text {carbon }}:=70 \cdot \frac{18}{100} \cdot \mathrm{~kg}$ $m_{\text {potassium }}:=70 \cdot \frac{0.2}{100} \cdot \mathrm{~kg}$
$M_{K}:=39.10 \cdot \mathrm{gm} \cdot$ mole $^{-1}$
$x_{40 K}:=0.0117 . \%$
From Table 5.2
(1) Tritium
$v_{\text {water }:}=\frac{m_{\text {water }}}{\rho_{\text {water }}} \quad R_{T}:=30 \cdot T U \cdot v_{\text {water }} \quad R_{T}=163.5 \cdot \mathrm{~Bq} \quad$ Of ${ }^{3} \mathrm{H}$
(2) ${ }^{14} \mathrm{C}$ (see $\S 5.1 .3$ for specific activity)
$S_{C}:=\frac{13.56}{60} \cdot B q \cdot \mathrm{gm}^{-1} \quad R_{14 \mathrm{C}}:=m_{\text {carbon }} \cdot S_{C} \quad R_{14 \mathrm{C}}=2.85 \cdot \mathrm{kBq}$
(3) ${ }^{40} \mathrm{~K}$
$t_{\text {half } 40 K}:=1.26 \cdot 10^{9} \cdot y r \quad \lambda_{40 K}:=\frac{\ln (2)}{t_{\text {half40K }}}$
$R_{40 K}:=\frac{m_{\text {potassium }}}{M_{K}} \cdot N_{A} \cdot x_{40 K}^{\lambda} 40 K \quad R_{40 K}=4.40 \cdot k B q$

(4) ${ }^{226} \mathrm{Ra}$ and daughters

$$
\begin{aligned}
& R_{R a}:=10 \cdot 10^{-12} \cdot 3.7 \cdot 10^{10} \cdot B q \quad R_{R a}=0.37 \cdot \mathrm{~Bq} \quad \text { (this value will be needed in 18.2) } \\
& R_{\text {Ratot }:=}(1.0+5 \cdot 0.3) \cdot R_{R a} \quad R_{\text {Ratot }}=0.93 \cdot \mathrm{~Bq} \\
& \text { Total }:=R_{T}+R_{14 C}+R_{40 K^{+}} R_{\text {Ratot }} \quad \text { Total }=7.41 \cdot \mathrm{kBq}
\end{aligned}
$$

