(18.6) A γ -dose rate of 1 Sv is assumed to inactivate (kill) human cells. The body contains $6*10^{13}$ cells in a cell weight of 42 kg for a 70 kg man. (a) What average energy (in eV) has to be deposited in a cell to kill it? (b) Calculate the number of kidney cells destroyed for the dose received in exercise 18.5. For simplicity assume the cells to be cubic with a side length of about 11 μ m.

Data, constants, and units:

$$eV := 1.6021773 \cdot 10^{-19} \cdot joule$$
 $MeV := 10^{6} \cdot eV$ $keV := 1000 \cdot eV$ $\mu m := 10^{-6} \cdot m$ $w_{R\beta\gamma} := 1$ $w_{R\alpha} := 20$ $E_{\alpha} := 4.198 \cdot MeV$ $Sv := joule \cdot kg^{-1}$

Data given in the text:

$$H_{kill} := 1 \cdot Sv$$
 $m_{cells} := 42 \cdot kg$ $m_{body} := 70 \cdot kg$

$$D_{kill} := \frac{H_{kill}}{W_{R\beta\gamma}}$$
 $m_{cell} := \frac{m_{cells}}{6 \cdot 10^{13}}$

(a)
$$D_{tot} = m_{cells} \cdot D_{kill}$$
 $d_{cell} = \frac{D_{tot}}{6 \cdot 10^{13}}$ $d_{cell} = 7 \cdot 10^{-13}$ · joule $d_{cell} = 4.37 \cdot MeV$

Answer 4.37 MeV

(b) For α $w_{\rm r}$ is 20. By interpolation in Table 6.2 we obtain LET=157 keV/ μ m for E $_{\alpha}$ =4.198 MeV from 238U.

$$LET := 157 \cdot \frac{keV}{\mu m} \qquad range := \frac{E_{\alpha}}{LET} \qquad range = 2.674 \cdot 10^{-5} \cdot m \qquad I_{cell} := 11 \cdot 10^{-6} \cdot m$$

$$n_{cells} := \frac{range}{I_{cell}} \qquad n_{cells} = 2.4 \qquad \text{thus a little more than 2 cells are affected}$$

$$e_{cell} := \frac{E_{\alpha}}{3 \cdot d_{cell}} \qquad e_{cell} w_{R\alpha} = 6.406 \qquad \text{thus 1 alpha kills 3 cells with margin.}$$

The number of ²³⁸U decayed i the kidneys can be calculated as follows:

 $t_{biol} = 15 \cdot day$ this is so much shorter than the half-life of ²³⁸U that we can neglect the physical half-life.

$$\lambda_{eff} = \frac{ln(2)}{t_{biol}}$$
 $t_{mean} = \frac{1}{\lambda_{eff}}$ $R_{OU} = 124.392 \cdot sec^{-1}$ from 18.5

Decays =
$$t_{mean} \cdot R_{0U}$$
 Decays = $2.326 \cdot 10^8$

Killed =
$$3 \cdot Decays$$
 Killed = $6.98 \cdot 10^8$

Answer: 6.98 108 cells