(19.10) Our solar system is considered to be 4.5 billion years old. What was the ²³⁵U percentage in natural uranium when the solar system was formed?

Known data and constants:

$$N_A := 6.022137 \cdot 10^{23} \cdot mole^{-1}$$
 $M_{235} := 235 \cdot gm \cdot mole^{-1}$ $M_{238} := 238 \cdot gm \cdot mole^{-1}$ $t_{h235} := 7.038 \cdot 10^8 \cdot yr$ $\lambda_{235} := \frac{ln(2)}{t_{h235}}$ $x_{235} := 0.72 \cdot \%$ $t_{h238} := 4.468 \cdot 10^9 \cdot yr$ $\lambda_{238} := \frac{ln(2)}{t_{h238}}$ $x_{238} := 1 - x_{235}$

Data given in the text:

$$t_{age} = 4.5 \cdot 10^9 \cdot yr$$

Assume 1 kg uranium for simplicity: $m_{tot} = 1 \cdot kg$

Calculations:

$$M_U = x_{235} M_{235} + x_{238} M_{238}$$

$$N_{235} = \frac{m_{tot}}{M_U} \cdot N_A \cdot x_{235} \qquad N_{238} = \frac{m_{tot}}{M_U} \cdot N_A \cdot x_{238}$$

$$N_{0235} = N_{235} \exp(\lambda_{235} t_{age})$$
 $m_{old235} = \frac{N_{0235}}{N_A} \cdot M_{235}$

$$N_{0238} := N_{238} \exp(\lambda_{238} t_{age})$$
 $m_{old238} := \frac{N_{0238}}{N_A} M_{238}$

$$m_{old} = m_{old235} + m_{old238}$$
 Fraction $_{235} = \frac{m_{old235}}{m_{old}}$ Fraction $_{235} = 0.231$

Fraction $_{235}$ = 23.1 · %