(19.11) The radiometric sensitivities for discovering 59 Fe, 131 I, and 90 Sr are 75, 25, and 0.74 kBq m⁻³ of water. In the Würgassen plant the total permitted aqueous annual release is 17 Ci β -emitters. Assume an activity ratio in the cooling water of 100:10:1 for the three nuclides above and that none of these activities exceed 1% of the permissible release. How many times must a liquid sample taken each day be concentrated to meet these requirements?

 $Ci := 3.7 \cdot 10^{10} \cdot Ba$

Data, constants, and units:

 $Bq = sec^{-1}$

Data given in the text:
$$p_{hrlevel} := 17 \cdot Ci \cdot yr^{-1}$$

$$V_{cooling} := 95000 \cdot m^{3} \cdot hr^{-1}$$

$$R_{59Fe} := 75 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3} \cdot Bq \cdot m^{-3}$$

$$R_{131I} := 25 \cdot 10^{3}$$

Conc131I :=
$$\frac{R_{131I}}{S_{131I}}$$
 Conc131I = 3.31·10⁴

$$Conc90Sr = \frac{R_{90}Sr}{S_{90}Sr}$$

$$Conc90Sr = 9.797 \cdot 10^{3}$$

Answer: 131 is the critical nuclide, requires concentration 33100 times; i.e. about 33000 times