(20.1) The gas space (volume $6000 \mathrm{~m}^{3}$ ) in the PS system of a large BWR is filled with $\mathrm{N}_{2}$ at 97 kPa and $25^{\circ} \mathrm{C}$. Assume the same temperature in the dry and wet wells and that the heat of evaporation of water and its heat capacitivity are $\sim 2.26 \mathrm{MJ} / \mathrm{kg}$ and $\sim 4.18 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, respectively, up to $\sim 100^{\circ} \mathrm{C}$. The $2000 \mathrm{~m}^{3}$ water in the condensation pool is at $25^{\circ} \mathrm{C}$. The primary system contains steam at $287^{\circ} \mathrm{C}$ and 7 MPa (energy content $\sim 2.8 \mathrm{MJ} / \mathrm{kg}$ steam). How many kg of such steam could be dumped into the condensation pool before the pressure in the PS system exceeds 0.1 MPa ?

$$
\begin{array}{ll}
C_{\text {pool }:=4.18 \cdot 10^{3} \cdot \text { joule } \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{1}} & \rho_{\text {water }}:=1 \cdot \mathrm{gm} \cdot \mathrm{~cm}^{-3} \\
V_{\text {pool }}:=2000 \cdot \mathrm{~m}^{3} & C_{\text {steam }}:=2.26 \cdot 10^{6} \cdot \mathrm{joule} \cdot \mathrm{~kg}^{-1} \\
T_{\text {Opool }}:=(25+273) \cdot K & m_{\text {Opool }}:=V_{\text {pool }} \rho \text { water } \\
\text { From expansion of } \mathrm{N}_{2} \text { (ideal gas law): } & T_{\text {max }}:=T_{\text {Opool }} \frac{0.1}{0.097}
\end{array}
$$

A first approximation is to regard the mass of pool water as constant:

$$
\begin{aligned}
& m_{\text {steam }}:=\left(T_{\text {max }}-T_{\text {Opool }}\right) \cdot C_{\text {pool }} \frac{m_{\text {Opool }}}{C_{\text {steam }}} \quad m_{\text {steam }}=3.409 \cdot 10^{4} \cdot \mathrm{~kg} \\
& \Delta m:=\frac{m_{\text {steam }}}{m_{\text {Opool }}} \quad \Delta m=1.705 \cdot \% \quad\left(\frac{\Delta m}{2}+1\right) \cdot m_{\text {Opool }}=2.017 \cdot 10^{6} \cdot \mathrm{~kg}
\end{aligned}
$$

Second approximation ( starting with the value estimated above):

$$
\begin{aligned}
& m_{\text {Opool }}:=2.017 \cdot 10^{6} \cdot \mathrm{~kg} \\
& m_{\text {steam }}:=\left(T_{\text {max }}-T_{\text {Opool }}\right) \cdot C_{\text {poor }} \frac{m_{\text {Opool }}}{C_{\text {steam }}} \quad m_{\text {steam }}=3.438 \cdot 10^{4} \cdot \mathrm{~kg} \\
& \Delta m:=\frac{m_{\text {steam }}}{m_{\text {Opool }}} \quad \Delta m=1.705 \cdot \% \quad\left(\frac{\Delta m}{2}+1\right) \cdot m_{\text {Opool }}=2.034 \cdot 10^{6} \cdot \mathrm{~kg}
\end{aligned}
$$

## Answer: about $3.4^{*}{ }^{*} 0^{4} \mathrm{~kg}=34$ ton

