(20.2) The amount of steam found in example 20.1 is released into an air-filled large dry containment where the pressure may not exceed 0.7 MPa . Assume steam and air in the containment can be treated as ideal gases. Estimate the necessary containment volume.
$T_{0}:=(25+273) \cdot K$
$p_{0}:=0.097 \cdot 10^{6} \cdot P a$
$M_{\mathrm{H} 2 \mathrm{O}}:=18 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}$

Base calculation on $p_{0}{ }^{*} V=n_{0}{ }^{\star} \boldsymbol{R}^{\star} T_{0}$ and $p_{1}{ }^{*} V=\left(n_{0}+n_{1}\right){ }^{\star} \boldsymbol{R}^{\star} T_{1}$, assume $T_{1}=\left(n_{0}{ }^{\star} T_{0}+n_{1}{ }^{*} T_{2}\right) /\left(n_{0}+n_{1}\right)$, where T_{2} is the initial steam temperature.
$\begin{array}{ll}R_{\text {gas }}:=8.31451 \cdot \text { joule } \cdot \text { mole }^{-1} \cdot K^{1} & T_{2}:=(287+273) \cdot K \quad p_{1}:=0.7 \cdot 10^{6} \cdot \mathrm{~Pa} \\ m_{\mathrm{H} 2 \mathrm{O}}:=34 \cdot 10^{3} \cdot \mathrm{~kg} & n_{1}:=\frac{m_{\mathrm{H} 2 \mathrm{O}}}{M_{\mathrm{H} 2 \mathrm{O}}}\end{array}$

Guess values:

$$
\begin{array}{ll}
V:=1000 \cdot m^{3} & n_{1}=1.889 \cdot 10^{6} \\
n_{0}:=\frac{p_{0} \cdot V}{R_{\text {gas }} \cdot T_{0}} & n_{0}=3.915 \cdot 10^{4}
\end{array}
$$

Given

$$
\frac{n_{0} \cdot R_{\text {gas }} \cdot T_{0}}{p_{0}}-\frac{\left(n_{0}+n_{1}\right) \cdot R_{g a s} \cdot\left(n_{0} \cdot T_{0}+n_{1} \cdot T_{2}\right)}{p_{1} \cdot\left(n_{0}+n_{1}\right)}=0 \cdot m^{3} \quad \text { Search for a root to this eqn }
$$

$n:=$ Find $\left(n_{0}\right) \quad$ Locate n, i.e. the value of n_{0} that satisfies the equation above

$$
n=5.71 \cdot 10^{5} \quad V_{\text {cont }}:=\frac{n \cdot R_{\mathrm{gas}}{ }^{-} T_{0}}{p_{0}} \quad V_{\text {cont }}=1.46 \cdot 10^{4} \cdot \mathrm{~m}^{3}
$$

