(20.3) In the Chernobyl accident, reactor output increased from ~20% to 100 times full power in about 4 seconds. Assume a constant reactivity excess during this time. a) What was the average reactor period? b) How much energy was released during this time?

$$GJ := 10^9 \cdot joule$$
 $P_0 := 20 \cdot \%$ $P_1 := 100$ $\Delta t := 4 \cdot sec$

(a)
$$t_{per} = \frac{\Delta t}{ln\left(\frac{P_1}{P_0}\right)}$$
 From eqn. (19.28) $t_{per} = 0.64 \cdot \text{sec}$

(b)
$$P_{th} = 3000 \cdot 10^6 \cdot watt$$
 $P_{init} = P_{th} \cdot P_0$ $P_{init} = 6 \cdot 10^8 \cdot watt$

$$Q_{tot} = P_{init} \int_{0 \cdot sec}^{\Delta t} exp\left(\frac{t}{t_{per}}\right) dt$$

$$Q_{tot} = 1.927 \cdot 10^{11} \cdot joule$$

$$Q_{tot} = 193 \cdot GJ$$

Comments:

$$TNT := 1.10^9 \cdot cal$$
 $\frac{Q \ tot}{TNT} = 46.027$ i.e. almost equivalent to the energy from explosion of 46 ton TNT (but a slower burn)