(20.5) ²³²U is formed in a thermal ²³²Th based breeder. (a) By which chain of reactions is it formed? (b) Will the choice between a continuous or discontinuous (once a year) reprocessing of the Th blanket affect the isotopic composition of the isolated uranium (assume that all other actinides remain in the blanket)?

Study Fig. 20.3. From this figure we get the following answers.

(a) 232 Th(n,2n) 231 Th(β -) 231 Pa(n, γ) 232 Pa(β -) 232 U

(b) Yes. Continuous reprocessing with isolation of ²³³Pa and decay of this isotope to ²³³U outside the reactor will give purer ²³³U than from yearly reprocessing with isolation of U, Pa or both. ²³³U is formed by the reactions: ²³²Th(n,γ)²³³Th(β -)²³³Pa(β -)²³³U. Main side reactions leading to other uranium isotopes are:

(a) above,

 233 Th(n, γ) 234 Th(β -) 234 mPa(β -) 234 U,

 233 Pa(n, γ) 234g,m Pa(β -) 234 U, and finally

²³³U(n,γ)²³⁴U.