(21.10) Calculate the natural radiotoxicity value $ln_{\rm W}$ of 1 km³ of land (density 2 600 kg m⁻³) containing 3 weight ppm ²³⁸U with daughter products. Only ²²⁶Ra has to be considered.

$$m_{tot} := Volume \cdot p$$

$$m_{tot} := Volume \cdot \rho$$
 $N_A := 6.022137 \cdot 20^{23} \cdot mole^{-1}$

$$t_{half} = 4.468 \cdot 10^9 \cdot yr$$
 $\lambda_U = \frac{ln(2)}{t_{half}}$

$$\lambda U := \frac{ln(2)}{t_{half}}$$

Equilibrium U-Ra assumed.

$$M_{U} = 238.03 \cdot gm \cdot mole^{-1}$$

$$C_{U} = 3.10^{-6}$$
 $Bq = sec^{-1}$

ALI for ²²⁶Ra is found in Table 18.12.

$$R_U := m_{tot} \frac{C_U}{M_U} N_A \cdot \lambda_U$$

$$R_U = 8.138 \cdot 10^{20} \cdot \text{sec}^{-1}$$
 ALI $R_a = 9 \cdot 10^4 \cdot Bq$

$$ALI_{Ra} = 9 \cdot 10^4 \cdot Bq$$

$$ln_W := \frac{R_U}{ALI_{Ra}}$$

$$ln_{W} = 9.04 \cdot 10^{15}$$