(21.11) A tank contains $100 \mathrm{~m}^{3} 5$ y old HLLW. Analyses show that a 1 ml sample contains 1.09 GBq of 90 Sr , which is the only Sr activity. (a) Calculate the heat production for a waste of composition in Table 21.9 left column. (b) How many 500 kg glass cylinders would be needed (assume the glass contains 10% FPs) to contain all the solidified waste? (c) How many 1000 MWe PWR reactor years does this waste correspond to?
$B q:=\sec ^{-1}$

Vol $:=100 \cdot m^{3}$
$R_{\text {tot }}:=\mathrm{Vol} \cdot \mathrm{S}_{\mathrm{Sr}}$

$$
S_{S r}:=1.09 \cdot 10^{9} \cdot B q \cdot \mathrm{~mL}^{-1}
$$

$s_{S r}:=\frac{2180 \cdot 10^{12}}{1000} \cdot B q \cdot \mathrm{~kg}^{-1}$
$m_{\text {tot }}=5 \cdot 10^{4} \cdot \mathrm{~kg}$
(a) $H_{F P}:=1.9 \cdot$ watt $\cdot \mathrm{kg}^{-1}$
$Q_{\text {tot }}:=H_{\text {FP }} m_{\text {tot }}$

$$
Q_{\text {tot }}=95 \cdot k W
$$

(b) $\quad m_{F P}:=\frac{34}{1000} \cdot m_{\text {tot }}$
$m_{F P}=1.7 \cdot 10^{3} \cdot \mathrm{~kg}$
$m_{c y l}:=500 \cdot \mathrm{~kg}$
$x_{c y l}:=10 \cdot \%$

$$
n_{c y l}:=\frac{m_{F P}}{x_{c y l} m_{c y l}}
$$

$$
n_{c y l}=34
$$

(c) Assume a burnup of $33 \mathrm{MWd} / \mathrm{kg}$.

$$
\eta:=34 \cdot \%
$$

typical LWR thermal efficiency
BUP $:=33 \cdot 10^{6} \cdot$ watt \cdot day $\cdot \mathrm{kg}^{-1}$
$P_{e}:=1000 \cdot 10^{6} \cdot$ watt
$P_{t h}:=\frac{P_{e}}{\eta}$
$P_{\text {th }}=2.941 \cdot 10^{9} \cdot$ watt
$S P_{\text {fuel }}:=\frac{P_{\text {th }}}{B U P}$
$S P_{\text {fuel }}=3.255 \cdot 10^{4} \cdot \frac{\mathrm{~kg}}{\mathrm{yr}}$
$R_{\text {years }}:=\frac{m_{\text {tot }}}{S P_{\text {fuel }}}$

$$
R_{\text {years }}=1.5 \cdot y r
$$

