(22.6) What will be the ratio of $[\mathrm{Pu}(\mathrm{III})] / \mathrm{Pu}[(\mathrm{IV})]$ in a groundwater containing small concentrations of iron in the relation Fe (II) $99 \%$ and Fe (III) $1 \%$ ? $\mathrm{E}^{\circ}$ for $\mathrm{Fe}(\mathrm{II}) / \mathrm{Fe}(\mathrm{III})=0.743$ V. Neglect hydrolysis.

Assume that data for $\mathrm{Pu}(\mathrm{III}) / \mathrm{Pu}(\mathrm{IV})$ from Fig. 22.3 at pH 8 are valid and that water temperature is $10^{\circ} \mathrm{C}$.
EO Fe $:=0.743 \cdot$ volt
EO $P u:=-0.39 \cdot$ volt
$T:=(273.15+10) \cdot K$

$$
R:=8.31451 \cdot \frac{\text { joule }}{\text { mole } \cdot K}
$$

$n:=1$ for both Fe and Pu in this example.
$N_{A}:=6.022137 \cdot 10^{23} \cdot$ mole $^{-1}$
$q_{e}:=1.6021773 \cdot 10^{-19} \cdot$ coul
$F:=q_{e} \cdot N_{A}$
${ }^{x} \mathrm{Fe} 2:=99 \cdot \%$
${ }^{x}$ Fe3 $:=1 \cdot \%$
$E_{F e}:=E O F e+\frac{R \cdot T}{n \cdot F} \cdot \ln \left(\frac{x_{F e 3}}{x_{F e 2}}\right)$
$E_{P u}=E O P u+\frac{R \cdot T}{n \cdot F} \cdot \ln \left(r_{P u}\right)$
$E_{F e}=0.631 \cdot$ volt
$E_{P u}:=E_{F e}$
$r_{P u}:=\exp \left[\frac{\left(E_{P u} \cdot n \cdot F-E O P \cdot \cdot n \cdot F\right)}{(R \cdot T)}\right]$
$r_{P u}=1.481 \cdot 10^{18} \quad$ and $\quad \frac{1}{r_{P u}}=6.753 \cdot 10^{-19} \quad \log \left(\frac{1}{r_{P u}}\right)=-18.2$

Thus, the ratio $\mathrm{Pu}(\mathrm{IV}) / \mathrm{Pu}(\mathrm{III})$ will be $1.481^{*} 10^{18}$, and the inverse is $6.75^{\star} 10^{-19}$ or $10^{-18.2}$.

