(8.2) Estimate the fraction of energy lost through bremsstrahlung for a β -emission of E_{max} =2.3 MeV, when absorbed in aluminum. The decrease of particle energy as well as the continuos β -spectrum must be taken into account.

$$E_{max} = 2.3$$
 $E_{average} = \frac{E_{max}}{3}$ $E_{average} = 0.767$ MeV

Assume:
$$E_e = E_{average}$$

$$dedx_{coll} := 1$$
 $Z := 13$ For aluminum

$$dEdx_{brems} = E_{e} \cdot \frac{Z}{800} \cdot dedx_{coll}$$
 Eqn. (7.16)

Fraction lost (%):
$$P := \frac{dEdx_{brems} \cdot 100}{dEdx_{brems} + dedx_{coll}} \qquad P = 1.231$$
 %