(18.2) A mixture of amino acids is to be assayed for systeine. A 1.0 ml sample (density 1 g ml⁻¹) is withdrawn, and 2.61 mg of ³²S labeled cysteine of specific activity 0.862 μ Ci mg⁻¹ is added. From this mixture pure cysteine is isolated by liquid-partition chromatography; 30.6 mg is isolated and measured to give 169000 cpm in 27% detection efficiency. What is the percentage of cysteine in the original mixture?

First the normal definitions:

$$Bq := sec^{-1}$$
 $cpm := min^{-1}$ $Ci := 3.7 \cdot 10^{10} \cdot Bq$

Then the data given in the text:

$$v$$
 sample := $1.0 \cdot mL$ ρ sample := $1 \cdot \frac{gm}{mL}$ m sample := v sample := v sample m syst := $2.61 \cdot mg$ S syst := $0.862 \cdot 10^{-6} \cdot Ci \cdot mg^{-1}$ S syst = $3.189 \cdot 10^7 \cdot \frac{Bq}{gm}$ m isol := $30.6 \cdot mg$ R isol := $169000 \cdot cpm$ $\psi := \frac{27}{100}$

From these data calculate as follows (neglect the added amount):

$$A_{isol} := \frac{R_{isol}}{\psi} \qquad S_{isol} := \frac{A_{isol}}{m_{isol}} \qquad S_{isol} = 3.409 \cdot 10^5 \cdot \frac{Bq}{gm}$$
Use eqn. $S_0^* m_0 = S_x^* m_x \qquad m_x := \frac{S_{syst} m_{syst}}{S_{isol}} \qquad m_x = 2.442 \cdot 10^{-4} \cdot \text{kg} \quad \text{or} \quad m_x = 244 \cdot mg$

$$P_{cyst} := \frac{m_x}{m_{sample}} \qquad P_{cyst} = 0.244 \quad \text{or} \qquad P_{cyst} = 24.4 \cdot \%$$