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CHAPTER 11
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  Throughout the ages and in every civilization, people have developed explanations of observed
behaviors. These explanations are based on the principle of causality, i.e. every effect has a
cause and the same cause produces always the same effect. We call these explanations models.
  Scientists are professional model-builders. Observed phenomena are used to develop a model,
which then is tested through new experiments. This is familiar to every chemist: although we
cannot see the atoms and molecules which we add into a reaction vessel, we
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certainly have some idea about what is going to happen. It is indeed our enjoyment in
developing models which causes us to experiment in science. We also want to be able to make
quantitative predictions based on our models which we therefore formulate in mathematical
terms. To allow tractable calculations most models involves simplifications of the "real world".
Of course, since man is fallible some models may turn out to be wrong but as new data
accumulate, wrong or naive models are replaced by better ones.
  We have already shown how one model for the nuclear structure, the liquid drop model, has
helped us to explain a number of nuclear properties, the most important being the shape of the
stability valley. But the liquid drop model fails to explain other important properties. In this
chapter we shall try to arrive at a nuclear model which takes into account the quantum
mechanical properties of the nucleus.

11.1. Requirements of a nuclear model

  Investigation of light emitted by excited atoms (J. Rydberg 1895) led N. Bohr to suggest the
quantized model for the atom, which became the foundation for explaining the chemical
properties of the elements and justifying their ordering in the periodic system. From studies of
molecular spectra and from theoretical quantum and wave mechanical calculations, we are able
to interpret many of the most intricate details of chemical bonding.
  In a similar manner, patterns of nuclear stability, results of nuclear reactions and spectroscopy
of radiation emitted by nuclei have yielded information which helps us develop a picture of
nuclear structure. But the situation is more complicated for the nucleus than for the atom. In
the nucleus there are two kinds of particles, protons and neutrons, packed close together, and
there are two kinds of forces ! the electrostatic force and the short range strong nuclear force.
This more complex situation has caused slow progress in developing a satisfactory model, and
no single nuclear model has been able to explain all the nuclear phenomena.

11.1.1. Some general nuclear properties

  Let us begin with a summary of what we know about the nucleus, and see where that leads
us.
  In Chapter 3 we observed that the binding energy per nucleon is almost constant for the stable
nuclei (Fig. 3.3) and that the radius is proportional to the cube root of the mass number. We
have interpreted this as reflecting fairly uniform distribution of charge and mass throughout the
volume of the nucleus. Other experimental evidence supports this interpretation (Fig. 3.4). This
information was used to develop the liquid drop model, which successfully explains the valley
of stability (Fig. 3.1). This overall view also supports the assumption of a strong, short range
nuclear force.
  A more detailed consideration of Figures 3.1 and 3.3 indicates that certain mass numbers
seem to be more stable, i.e. nuclei with Z- or N-values of 2, 8, 20, 28, 50, and 82 (see also
Table 3.1). There is other evidence for the uniqueness of those numbers. For example, if either
the probability of capturing a neutron (the neutron capture cross-section) or the energy required
to release a neutron is plotted for different elements, it is found that
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maxima occur at these same neutron numbers, just as maxima occur for the electron ionization
energy of the elements He, Ne, Ar, Kr, etc. (i.e. at electron numbers of 2, 8, 16, 32, etc.).
The nuclear N- or Z-values of 2, 8, 20, 28, 50, and 82 are called "magic numbers".
  It seems logical that these magic numbers indicate some kind of regular substructure in the
nucleus. Moreover, since the same magic numbers are found for the neutrons and for the
protons, we would further assume that the neutrons and the protons build their substructure
independently of each other, but in the same way. Another fact that must be indicative of the
nuclear substructure is the stability for nuclei with even proton or even neutron numbers. Since
we know that the individual nucleons have spin, we could postulate that nucleons in the nucleus
must pair off with opposed spins.

11.1.2. Quantized energy levels

  The nucleus would thus seem to consist of independent substructures of neutrons and protons,
with each type of nucleon paired off as far as possible. Further, the nucleons obviously grouped
together in the magic numbers. From the decay of radioactive nuclei we know that the total
decay energy (Q-value) of any particular nuclide has a definite value. Moreover, (-emission
from any particular nucleus involves discrete, definite values. These facts resemble the
quantized emission of electromagnetic radiation (X-ray, UV, visible light,
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FIG. 11.2. The Sn neutron and proton shell structure in the potential well. (According to S.116

G. Nilsson.)

etc.) from atoms. We may conclude a similar explanation for the nucleus: decay of radioactive
nuclei, whether ", $, or (, involves a transition between discrete quantized energy levels.

11.1.3. The nuclear potential well

  In our development of a model of the nucleus we have so far not considered the nuclear
binding energy. Let us imagine the situation wherein a neutron of low kinetic energy approaches
a nucleus (Fig. 11.1). Since the neutron is uncharged it is not affected by the Coulomb field of
the nucleus and approaches the nucleus with no interaction, until it is close enough to experience
the strong nuclear force F , which is always attractive, i.e. F  is a positive quantity. At then       n
point r  the neutron experiences the strong attraction to the nucleus and is absorbed. The surfacen
of the nucleus is assumed to extend to r  since this distance represents the radius of the nucleuss
over which the nuclear force is constant. When the neutron is absorbed, energy is released and
emitted in the form of a (-quantum. The energy of the (-ray can be calculated from the known
masses of the reactants and product nuclides: E  = ! 931.5(M  ! M  ! M ).(   A+1  A  n
  The energy released is the (neutron) binding energy of the nucleus E . The total energy of theB
nucleus has thus decreased as is indicated in Figure 11.1(B); it is common to refer to this
decrease as a potential well. The nucleons can be considered to occupy different levels in such
a potential well. The exact shape of the well is uncertain (parabolic, square, etc.) and depends
on the mathematical form assumed for the interaction between the incoming particle and the
nucleus.
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  Protons experience the same strong, short range nuclear force interaction as they contact the
nucleus. However, they also experience a long range repulsive interaction due to the Coulomb
force between the positive incoming protons and the positive charge of the nucleus. This
repulsion prevents the potential well from being as deep for protons as for neutrons. Figure
11.2 shows the energy levels of the protons and of the neutrons in the nucleus of Sn.116

50

11.2. Rotational energy and angular momentum

  It is an intriguing fact that nucleons in nuclei, electrons in atoms, as well as large cosmic
objects such as solar systems and even galaxies, are more dominated by rotational than by linear
motion, although in our daily life the latter seems to be a more common phenomenon. In
rotation there is a balance between two forces: the centrifugal force of inertia, which tries to
move a body away from a center point, and an attractive force (gravitational, electrostatic,
etc.), which opposes the separation.
  In the preceding section we assumed that the nucleus existed in some kind of a potential well.
One may further assume that a nucleon moves around in this well in a way not too different
from the way the electron moves around the atomic nucleus, i.e. with an oscillation between
kinetic and potential energy. With some hypothesis about the shape of the nuclear potential well
we can apply the Schrödinger wave equation to the nucleus. Without being concerned at this
point with the consequences of assuming different shapes we can conclude that the solution of
the wave equation allows only certain energy states. These energy states are defined by two
quantum numbers: the principal quantum number n, which is related to the total energy of the
system, and the azimuthal (or radial) quantum number l, which is related to the rotational
movement of the nucleus.

11.2.1. Rotational (mechanical) energy

  If a mass m circles in an orbit of radius r at a constant angular velocity T (rad s ), the-1

tangential velocity at this radius is

v  = Tr (11.1)r

The kinetic energy in linear motion is E  = 2mv , and we therefore obtain for the (kinetic)kin
 2

rotational energy

E  = 2mT r (11.2a)rot
2  2

The angular velocity is often expressed as the frequency of rotation, L  = T/2B s . Equationr
-1

(11.2a) can also be written

E  = 2I T (11.2b)rot  rot 
2

where
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FIG. 11.3. A particle spinning in (a) field-free space and (b) in an external field along the z-axis.

I  = 3m r (11.3)rot  i i
2

is the rotational moment of inertia. We consider as the rotating body a system of i particles of
masses m , each individual particle at a distance r  from the axis of rotation; then (11.2b) isi        i
valid for any rotating body. In nuclear science we primarily have to consider two kinds of
rotation: the intrinsic rotation (or spin) of a body around its own axis (e.g. the rotation of the
earth every 24 h), and the orbital rotation of an object around a central point (e.g. rotation of
the earth around the sun every 365 days). Equation (11.2b) is valid for both cases, but (11.2a)
only for the orbital rotation of a particle of small dimensions compared to the orbital radius, in
which case I  = mr . For a spherical homogeneous spinning body (e.g. the earth's intrinsicrot

 2

rotation) of external radius r , (11.2b) must be used, where I  = 2mr /5.ex       rot  ex
2

11.2.2. Angular momentum

  Like linear motion, rotation is associated with a momentum, called the angular momentum.
For the orbital rotation the orbital angular momentum (p ) isl

p  = mv r (11.4a)l  r 

while for spin the spin angular momentum (p ) iss

p  = TI (11.4b)s  rot

  Angular momentum is a vector quantity, which means that it has always a certain orientation
in space, depending on the direction of rotation.  For the rotation indicated in
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Figure 11.3(a), the vector can only point upwards. It would not help to turn the picture upside
down because the coupling between rotational direction and its vector remains the same, as
students south of the equator will agree.
  Quantum mechanics prescribes that the spin angular momentum of electrons, protons, and
neutrons must have the magnitude

p  = SS[s(s+1)] (11.5)s
2

here s is the spin quantum number. For a single particle (electron or nucleon) the spin s is
always 1/2. In addition to spin, the three atomic particles can have orbital movements. Again
quantum mechanics prescribes that the magnitude of the orbital angular momentum of these
particles

p  = SS[l(l+1)] (11.6)l
2

We shall refer to l as the orbital (angular momentum) quantum number. Only certain values are
permitted for l, related to the main quantum number n:

for electrons: 0  # l < n!1
for nucleons: 0  # l

For nucleons but not for electrons l may (and often does) exceed n.

11.2.3. Coupling of spin and orbital angular moments

  A rotating charge gives rise to a magnetic moment F . The rotating electron and proton cans
therefore be considered as tiny magnets. Because of the internal charge distribution of the
neutron it also acts as a small magnet. In the absence of any external magnetic field these
magnets point in any direction in space (Fig. 11.3(a)), but in the presence of an external field
they are oriented in certain directions determined by quantum mechanical rules. This is
indicated by the angle 2 in Figure 11.3(b), when we have the spinning particle in the center of
a coordinate system. The quantum mechanical rule is that the only values allowed for the
projections of spin angular momentum p (z) on the field axes are:s

p (z) = SSm (11.7)s   s

For composite systems, like an electron in an atom or a nucleon in a nucleus, the (magnetic)
spin quantum number m  may have two values, +1/2 or !1/2, because the spin vector has twos
possible orientations (up or down) with regard to the orbital angular momentum.
  The orbital movement of an electron in an atom, or of a proton in the nucleus, gives rise to
another magnetic moment (F ) which also interacts with external fields. Again quantuml
mechanics prescribes how the orbital plane may be oriented in relation to such a field (Fig.
11.4(a)). The orbital angular momentum vector pP  can assume only such directions that itsl
projection on the field axes, p (z), has the valuesl
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p (z) = SSm (11.8)l   l

m  is referred to as the magnetic orbital quantum numbers; m  can have all integer valuesl          l
between !l and +l.
  For a single-particle, nucleon or electron, the orbital and spin angular moments add vectorially
to form a resultant vector (Fig. 11.4(b)),

pP  = pP  + pP (11.9)j  l  s

pP  will orient itself towards an external field so that only the projectionsj

p (z) =SSm (11.10)j  j

are obtained on the field axes, m  is the total magnetic angular momentum quantum number; itj
can have all integer values between !j and +j. The magnitude of p  isj

p  = SS[j(j+1)] (11.11)j
2

where

j = l ± s (11.12)

Here j is the total (resultant) quantum number of the particle.
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11.2.4. Magnetic moments

  a. Single particles. Dirac showed in 1928 that the spin magnetic moment of the electron is:

F (electron) = SSe/2m  = B (11.13)s   e  e

where B = 9.273 × 10  JT  (joule per tesla). This value is referred to as one Bohre
!24 !1

magneton (B.m.). For the proton one would expect the spin magnetic moment F  to bes

B @m /m  = B (11.14)e e p  n

B  (n for nucleon) has the value 5.051 × 10  JT  and is referred to as one nuclear magnetonn
!27 !1

(n.m.). However, measurements show that

F (proton) = 14.1 × 10  JT  = 2.793 n.m.s
!27 !1

The reason for the higher value is found in the uneven charge distribution within the proton.
  Recall that the neutron also has an uneven charge distribution. This gives rise to a neutron spin
magnetic moment

F (neutron) = !1.913 n.m.s

  The magnetic moment F , caused by a charge q in circular orbit, can be calculated froml
classical physics: the current caused in the orbit, qv , times the area encircled, Br . Thereforer

2

F = qv r/2 (11.15)l  r 

  Dividing (11.15) by p  according to (11.4a), givesl

( = F /p  = q/2m (11.16a)l l

This ratio ( is called the gyromagnetic ratio. If ( and p  are known, F  may be calculated.l   l
Equation (11.16a) is valid for electrons (e, m ), but for protons only the left part. Because ofe
the quantization of p (z) (11.8) the component of the orbital magnetic moment in the fieldl
direction (Fig. 11.4(a)) is also quantized:

F (electron) = m B (11.17)l   l e

  Such a simple approach is not possible for a nucleon in a nucleus, because no nucleon moves
completely independent of the other nucleons, nor is the orbital path always circular.
  b. Atoms and nuclei. In an atom with many electrons, the spin and angular moments of the
electrons  couple  vectorially  and  separately  to  form  resultant  quantum  numbers  (using
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Line Property Electron Proton Neutron
_______________________________________________________________________________________

1     Mass(u) 0.000 5486 1.007 276 1.008 665
2     Charge (e units) !1 +1 !1
3     Spin quantum number s 1/2 1/2 1/2
4     Spin dipole moment µ =1 B.m. µ =2.793 n.m. µ =!1.913 n.m.e  p  n

.))))))))0)))))-
5     Orbital quantum number 0#l#n!1 0#l
6     Permitted orbital field projections !SSl…+SSl !SSl…+SSl
7     Total angular quantum number ( j=l±s ) j=l±s
8     Total angular momentum ( p =SS/(j(j+1)) ) p =SS/(j(j+1))j  j
9     Particle symbolism nl nli

j
_______________________________________________________________________________________
Notes
2. The electron unit charge: e = 1.602 × 10  C.!19

3. The spin angular momentum has the magnitude p=SS/(s(s+1)), with the permitted projections on an external6

field axis: ±sSS (for e, p, and n =2SS).
7. l and s couple only in the one-electron system; see §11.2.4.
8. Permitted projections on an external field axis: SSm , where !j#m #j.j   j
9. n is the principal quantum number, l the azimuthal (orbital, radial) quantum number, i is the number of electrons
in the particular n,l state, and j is the total angular momentum quantum number. For l=0, 1, 2, etc., the symbols
s, p, d, f, g, etc., are used.

TABLE 11.1. Summary of the properties of the atomic constituents (independent movements in a central potential field).

Electron-electron Nucleon-nucleon
Line Property interaction   interaction
________________________________________________________________________________________

10   Spin-spin (s-s) coupling, q.n. S=Gs  (strong) :For each nucleon j=l±si
11   Total spin magnetic moment µ =2(S(S+1)) B.m. =and I=Gjs  i

2

12   Orbit-orbit (l-l) coupling, q.n. L=Gl  (strong) ;For ee nuclei: groundstate l=0i
13   Total orbital magnetic moment µ =2(L(L+1)) B.m. =For eo, oe nuclei: groundstate l=jL

2

14   Spin-orbit coupling, q.n. J=S+L (weak) <For oo nuclei: groundstate varies
15   Resulting angular momentum p =SS(J(J+1)) B.m.  p =SS(I(I+1)) n.m.J  I

2  2

16   Resulting magnetic moment µ =g (J(J+1)) B.m.  µ =g (I(I+1)) n.m.J J  I I
2  2

17   Transition selection rules )L±1, )J=0 or ±1  ) =integer, ) >0I  j
18   Multipole moment Electric dipole  Electric or magnetic multipole
________________________________________________________________________________________

Electron-nucleon interactions
________________________________________________________________________________________

19   Grand atomic angular mom., q.n. F = J + I = S + L + I
20   Grand atomic angular mom. p =SS(F(F+1)) ; field projections 0,…,SSFF

2

21   External field: none Hyperfine spectrum (hfs): J levels split due to nuclear spin I
22   External field: weak (#10  T) Hfs F-levels split into 2F+1 levels (Zeeman effect)!2

23   External field: average (-10 T) Electron-nucleon q.n. decouple, producing (2J+1)(2I+1) levels
24   External field: very strong Electron spin-orbit decouple, producing separate S- and L-levels

TABLE 11.2. Summary of atomic and nuclear properties associated with particle interactions (q.n. = quantum number).
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conventional symbolism)

S = 3sP (11.18a)i

L = 3 lP (11.18b)i

which couple to form the total angular momentum (or internal) quantum number of the atom

JP = LP + SP (11.18c)

(see Table 11.2). Equations (11.18) are referred to as Russell-Saunders coupling. For the atom
as a whole, the magnetic moment is

F(atom) = g  e p  /2 m  = g  B  m (11.19)j  j  e  j e j

where g  is the Landé factor and +J # m  # !J. The Landé factor accounts for the effect ofj        j
mutual screening of the electrons.
  The nuclear magnetic moment depends on the spin and angular moments of the neutrons and
protons. For the nucleus it is given by

F(nucleus) = g  e p  /2 m (11.20)I  I  p

where g  is the nuclear g-factor and p , the magnitude of the nuclear spin angular moment.I      I
Because this moment can have only the projections SS m  on the axes of a magnetic field whereI
m  is the nuclear magnetic angular momentum quantum number ( !I # m  # I), we may writeI            I
this equation

F(nucleus) = g  (e SS /2 m )m  = g  B  m (11.21)I    p I  I n I

I is the total nuclear spin. We shall see in the next section how I can be determined.
  In Table 11.1 we have summarized the most important properties of the atomic constituents,
and in Table 11.2 their modes of interaction. In Table 11.3 some spin and magnetic moments
are given for stable and radioactive nuclei.

11.2.5. Precession

  Before going into the details of nuclear structure, there is one more property of the nucleon
which must be considered. Both types of angular momenta, p  and p , as well as theirs  l
corresponding magnetic moments, are vector quantities. Quantum mechanics forbids pP (and
consequently F) to be exactly parallel with an external field. At the same time the external field
tries to pull the vector so that the plane of rotation becomes perpendicular to the field lines. The
potential magnetic energy is

E  = BP@FP = B@F cos 2 (11.22)magn
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Stable nuclides Radioactive nuclides
________________________________ ________________________________________________

X I (±)  µ  Q$ X I (±)  µ  Q$ tA    A
I    I  2

________________________________ ________________________________________________

H 1/2 + +2.793 H 1/2 + +2.979 12.33 y1  3

H 1 + +0.857 +0.003 C 0 + 5730 y2  14

B 3 + +1.801 +0.085 Na 4 + +1.690 14.959 h10  24

B 3/2 ! +2.689 +0.041 P 1 + !0.252 14.262 d11  32

C 0 + Cl 2 + +1.285 !0.018 3.01×10  y12  36  5

C 1/2 ! +0.702 Ca 7/2 ! !1.327 +0.046 163.8 d13  45

N 1 + +0.404 +0.019 Fe 3/2 ! 2.73 y14  55

O 0 + Co 5 + +3.799 +0.44 5.271 y16  60

O 5/2 + !1.894 !0.026 Cu 1 + !0.217 12.70 h17  64

F 1/2 + +2.629 Zr 5/2 + 64.02 d19  95

Na 3/2 + +2.218 +0.101 I 7/2 + +2.742 !0.40 8.0207 d23  131

P 1/2 + +1.132 Cs 7/2 + +2.841 +0.051 30.0 y31  137

S 3/2 + +0.644 !0.076 La 3 ! +0.730 +0.094 1.678 d33  140

K 3/2 + +0.391 +0.049 Au 2 ! +0.593 +0.68 2.6952 d39  198

Co 7/2 ! +4.627 +0.404 Th 0 + 1.405×10  y (")59  232  10

Sr 9/2 + !1.094 +0.335 U 7/2 ! !0.38 +4.55 7.038×10  y (")87  235  8

Pr 5/2 + +4.275 !0.059 U 0 + 13.9 4.468×10  y (")141  238  9

Au 3/2 + +0.146 +0.547 Pu 1/2 + +0.203 2.411×10  y (")197  239  4

TABLE 11.3. Spin I, parity (+ even, ! odd), nuclear magnetic moment (µ n.m.) and quadrupole moment Q$  (10  m )!28 2

for some nuclides XA

(see Figs. 11.3 and 11.4) where B is the magnetic field strength. However, because of the
inertia of the particle this does not occur until the particle has moved somewhat along its orbit,
with the consequence that the vector starts to rotate around the field axes as shown in Figure
11.4(a). The angular momentum vector therefore precesses around the field axes, like a
gyroscope. We may rewrite (11.16a) as

( = FP/pP (11.16b)rot

This form makes it more obvious why ( is referred to as the gyromagnetic ratio. Equation
(11.16b) is valid both for angular momentum and spin, but of course the value is different for
electrons and protons. The angular velocity T  of the precession is found to be(

T  = FBP/pP (11.23)(  rot

By replacing angular velocity with frequency (T = 2BL)

L  = (@B /2Bp (11.24a)(   rot

or

L  = (@B/2B (11.24b)(
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Number of states   Accumulated
l        State Possible quantum values (including spin) nucleon number
________________________________________________________________________________________

0 s 0   1 x 2 = 2  2
1 p       !1,0,+1   3 x 2 = 6  8
2 d            !2,!1,0,+1,+2   5 x 2 = 10 18
3 f       !3,!2,!1,0,+1,+2,+3   7 x 2 = 14 32
4 g          !4,!3,!2,!1,0,+1,+2,+3,+4   9 x 2 = 18 50
l -      !l, …, +l     2(2l+1)  !

TABLE 11.4. Energy levels derived on basis of permitted values for the azimuthal quantum number l and spin quantum
number s

where L  is the Larmor precession frequency.(

11.3. The single-particle shell model

11.3.1. Quantum number rules

  Let us assume that a nucleon moves around freely in the nuclear potential well, which is
spherically symmetric, and that the energy of the nucleon varies between potential and kinetic
like a harmonic oscillator, i.e. the potential walls (see Figs. 11.1 and 11.2) are parabolic. For
these conditions the solution of the Schrödinger equation yields:

E(nucleon)= SS(2U /mr ) [2(n!1)+l] (11.25)o
2 2 

where U  is the potential at radius r = 0 and m is the nucleon mass. We have defined n and lo
previously. The square root, which has the dimension s , is sometimes referred to as the!1

oscillator frequency (T in Table 11.6). The following rules are valid for nucleons in the nuclear
potential well:

(a) l can have all positive integer values beginning with 0, independent of n;

(b) the energy of the l state increases with increasing n as given by (11.25);

(c) the nucleons enter the level with the lowest total energy according to (11.25)
independent of whether n or l is the larger;

(d) there are independent sets of levels for protons and for neutrons;

(e) the Pauli principle is valid, i.e. the system cannot contain two particles with all
quantum numbers being the same;

(f) the spin quantum numbers must be taken into account (not included in (11.25)).
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Levels Number of nucleons Accumulated nucleons
_______________________________________________________________________

1s         2   2
1p         6   8
1d and 2s     10 + 2  20
1f and 2p     14 + 6  40
1g, 2d, and 3s 18 + 10 + 2  70
1h, 2f, and 3p 22 + 14 + 6 112
…         …   …

TABLE 11.5. Energy levels according to equation (11.25)

  Following these rules, the nucleons vary greatly in energy and orbital motion. However these
rules do not exclude the existence of two nucleons with the same energy (so-called degenerate
states), provided the quantum numbers differ.

11.3.2. Nuclei without nucleon spin-orbit coupling

  If we calculate the sequence of energy levels on the assumption that n is constant, we obtain
the pattern in Table 11.4. This is the sequence of electronic states in atoms but it does not agree
with the observed magic numbers 2, 8, 20, 28, 50, etc., for nuclei.
  Applying the rules of the previous section a new set of nucleon numbers is obtained: 2, 8, 20,
40, 70, etc. (Table 11.5, and left column Table 11.6). This level scheme allows a large amount
of degeneracy. For example, for n = 1 and l = 3 (1f-state) we find from (11.25) that
[2(n!1)+l] = 3, which value is obtained also for n = 2 and l = 1 (2p-state). Since the f-state
can have 14 and the p-state 6 nucleons, the degenerate level of both states can contain 20
nucleons. However, the numbers still do not correspond to the experimental magic numbers.
  A further refinement is possible if we assume that the nuclear potential well has straight walls,
i.e. the potential energy U(r) is !U  at r < r  while it is infinite at r $ r , where r  is theo    n        n   n
nuclear radius. This assumption, when introduced (see Fig. 11.2 and figure in  Table 11.6) in
the Schrödinger-equation, leads to a splitting of the degenerate levels, so that the lowest energy
is obtained for the state with lowest main quantum number n. For our example of the 1f and
2p-states the 1f orbitals are lower in energy than the 2p. This refinement yields the middle row
of levels in Table 11.6 but still does not lead to the correct magic numbers.

11.3.3. Nuclear level scheme with nucleon spin-orbit coupling

  In multielectron atoms, the Russell-Saunders coupling is present in light atoms. However, in
the heaviest atoms of many electrons and in highly charged nuclei, the j-j (spin-orbit) coupling
better describes the systems. Haxel, Jensen, Suess, and Goeppert-Mayer in 1949 suggested that
the nucleons always experience a strong spin-orbit coupling according to (11.12)
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FIG. 11.5. Part of the decay scheme for A=47; the data are experimental values.

j = l ± s (11.12)

and that the total spin of the nucleus I is the sum of the nucleon spins

I = 3j (11.26)

In this way, all I levels are split into two levels with quantum values l + 1/2 and l ! 1/2, of
which the former has the lowest energy value (the opposite of the electron case). This yields
the row of levels on the right in Table 11.6. Because of the energy splitting the new levels
group together so they fit exactly with the experimental magic numbers.
  As an example, consider the level designation 1i . This has the following interpretation: the11/2
principal quantum number is 1; i indicates that the orbital quantum number l is 6; the angular
momentum quantum number j is 11/2 (j = l ! 1/2). The number of permitted nucleons in each
level is 2j + 1, thus 12 for j = 11/2.
  The magic numbers correspond to sets of energy levels of similar energy just as in the atom
the K, L, M, etc., shells represent orbitals of similar energy. The N-electronic shell contains
the 4s, 3d, 4p sets of orbitals while the 4th nuclear "shell" contains the 1f , 2p , 2p , and5/2  3/2  1/2
1g  sets of orbitals. Remember that there are separate sets of orbitals for protons and for9/2
neutrons.

11.3.4. The nuclear spin

  The nuclear spin I is obtained from (11.12) and (11.26). Since j is always a half-integer,
nuclides with odd number of nucleons (odd A) must have odd spin values (odd I), while those
with even A must have even I. The nucleons always pair, so that even numbers of protons
produce no net spin. The same is true for even numbers of neutrons. For nuclei of even
numbers for both N and Z, the total nuclear spin I is always equal to zero. Some ground state
nuclear spins are given in Table 11.3.
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  For odd A the nuclear spin is wholly determined by the single unpaired nucleon (single particle
model). Let us take the nucleus C as an example. It contains 6 protons and 7 neutrons. From13

6
Table 11.6 we conclude that there are 2 protons in the 1s  level and 4 protons in the 1p1/2       3/2
level. A similar result is obtained for the first 6 neutrons but the 7th neutron must enter the
1p  level. The value of I for C is thus 1/2. Another example is V, which has 23 protons1/2              23

13        51

and 28 neutrons. Since N = 28, the neutrons do not contribute to I. From Table 11.6 we see
that we can accommodate 20 protons in the orbitals 1s , 1p , 1d  ,2s . The next 3 protons must2  6  10 2

go into the 1f  level (1f ), where, however, 2 of them are paired. Therefore, the single7/2  7/2
3

unpaired proton has j = 7/2, leading us to predict I = 7/2, which also is the measured nuclear
spin value.
  When a nucleus is excited, either through interaction with other particles or in a decay
process, for nuclei with N or Z values near magic numbers the paired nucleons seem not to be
perturbed by the excitation (if it is not too large). As a result, we can associate the excitation
with any unpaired nucleons. Let us choose the decay of Ca to Sc (see Fig. 11.5). Ca has47   47     47

27 neutrons and in the ground state the last 7 neutrons must occupy the 1f  level. The ground7/2
state of (the unstable) Sc has 21 protons, the unpaired proton can only be accommodated in47

the 1f  level. Thus both of the ground states have I = 7/2. The next higher energy states for7/2
Sc involve the levels 1f  and 2p . In the Figure it is seen that these levels are observed47

5/2  3/2
although their order is reversed from that in Table 11.6. This reflects some limitation of the
single-particle model, and is explained in §11.5.
  For odd-odd nuclei the nuclear spin is given by

I(odd-odd) = j  + j  = (l  ± 1/2) + (l  ± 1/2) (11.27a)p  n  p    n

According to the rules formulated by Brennan and Bernstein (useful in the range 20 < A < 120
for ground states and low-lying longlived isomeric states), if the odd particles are both particles
(or both holes) in their respective unfilled subshells then

if  j  + j  + l  + l   is even, then I = *j  ! j * (11.27b)p  n  p  n      p  n

if  j  + j  + l  + l   is odd, then I = *j  ± j *p  n  p  n      p  n

but if we have both particles and holes, then I = j  + j  ! 1p  n

The use of these rules can be illustrated by the case of Cu which has its odd proton in the 1f64
29         5/2

orbital and its odd neutron in the 2p  orbital. Thus for the proton, j = 5/2, l = 3; for the3/2
neutron, j = 3/2, l = 1. Because j  + j  + l  + l  is even, we use I = *5/2 ! 3/2* = 1, whichp  n  p  n
is the observed spin value. The lightest nuclei are exceptions to this rule since they often exhibit
LS coupling according to (11.18). B is an example; it has 5 protons and 5 neutrons, the fifth10

nucleon being in the 1p  state. Thus I = j  + j  = 3, which is observed.3/2     1  2
  We mentioned in §11.2.4 that theoretical calculations of the nuclear magnetic moment,
(11.21), are usually not satisfactory. The value of F(nucleus) can have a number of values
depending on m , with a maximum value of I.I
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 Parity is the behavior of wave functions when all coordinate signs are reversed. Even parity — no effect, else odd1

parity.

  The parity  of the nucleus follows the rules: (i) when both particles are in states either of even1

parity or of odd parity, they combine to a system of even parity. (ii) one particle in a state of
even parity and one in a state of odd parity combine to a system of odd parity.

11.4. Deformed nuclei

11.4.1. Deformation index

  Both the liquid-drop model and the single-particle model assume that the mass and charge of
the nucleus are spherically symmetric. This is true only for nuclei close to the magic numbers;
other nuclei have distorted shapes. The most common assumption about the distortion of the
nuclide shape is that it is ellipsoidal, i.e. a cross-section of the nucleus is an ellipse. Figure 11.6
shows the oblate (flying-saucer-like) and prolate (egg-shaped) ellipsoidally distorted nuclei; the
prolate shape is the more common. Deviation from the spherical shape is given by

$ = 2(a!c)/(a+c) (11.28)

where a and c are the elliptical axes as shown on in Figure 11.6c. For prolate shape $ > 0, and
for oblate shape $ < 0. The maximum deformation observed is about $ = ±0.6.
  The deformation is related to the nuclear shell structure. Nuclei with magic numbers are
spherical and have sharp boundary surfaces (they are "hard"). As the values of N and Z depart
from the magic numbers the nucleus increases its deformation.

11.4.2. Electric multipoles

  In a spherical nucleus we assume the charge distribution to be spherical and the nucleus acts
as a monopole. In the deformed nuclei, the nuclear charge has a non-spherical distribution. The
potential at a point x6,y6,z6 (Fig. 11.6) will be found to vary depending on the charge distribution
and mode of rotation of the nucleus. The nuclear charge may be distributed to form a dipole,
a quadrupole, etc. Nuclei are therefore divided into different classes depending on their
electrical moments: monopoles, dipoles, quadrupoles, octupoles etc.
  It has been found that nuclei with spin I = 0 have no multipole moment. According to theory,
nuclei with I = 1/2 can have a dipole moment, but this has not yet been shown experimentally.
Nuclei with I = 1 have quadrupole moments; they are fairly common. The quadrupole moment Q$
can be calculated for spheroidal (i.e. deformation not too far from a sphere) nuclei in terms of
the electron charge, e, by

Q$  = (2/5) Z (a  ! c ) (11.29a)2  2
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FIG. 11.6. Three nuclidic shapes: (a) spherical nucleus, (b) oblate (extended at the equator), and
(c) prolate (extended at the poles).

Q$  is usually referred to as the internal quadrupole moment, i.e. the expected value for a rotation
around the z-axis. However, quantum mechanics makes this impossible and gives for the
maximum observable quadrupole moment

Q$  = Q$ (I!1/2)/(I+1) (11.29b)obs

Thus Q$ = 0 for I # 1/2. Q$  is usually given in area (m ). Most commonly 10 m  is usedobs       obs
2    !28 2

as unit and referred to as one barn, Q$  is > 0 for the more common prolate shape, and <obs
0 for oblate. Some measured values are given in Table 11.3.
  The rotation of nuclei with electric multipoles gives rise to formation of magnetic multipoles.
Nuclei can therefore also be divided according to the magnetic moments in the same way as
according to their electrical moments.

11.4.3. The collective nuclear model

  In 1953 A. Bohr and Mottelsen suggested that the nucleus be regarded as a highly compressed
liquid, undergoing quantized rotations and vibrations. Four discrete collective motions can be
visualized. In Figure 11.6 we can imagine that the nucleus rotates around the y-axis as well as
around the z-axis. In addition it may oscillate between prolate to oblate forms (so-called
irrotation) as well as vibrate, for example, along the x-axis. Each mode of such collective
nuclear movement has its own quantized energy. In addition, the movements may be coupled
(cf. coupling of vibration and rotation in a molecule).
  The model allows the calculation of rotational and vibrational levels as shown in Figure 11.7.
If a U nucleus is excited above its ground state through interaction with a high energy heavy238

ion (coulomb excitation), we have to distinguish between three types of excitation: (a) nuclear
excitation, in which the quantum number j is changed to raise the nucleus to a higher energy
level (according to Table 11.6); (b) vibrational excitation, in which case j is unchanged, but the
nucleus is raised to a higher vibrational level, characterized by a particular vibrational quantum
number (indicated in the figure); (c) rotational excitation, also characterized by a particular
rotational quantum number. The Figure shows that the rotational levels are more closely spaced
and thus transitions between
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rotational levels involve lower energies than de-excitation from excited nuclear or vibrational
states.
  In case of even-even nuclei, the rotational energy levels can be often calculated from the
simple expression

E  = (SS /2I )n (n +1) (11.30)rot  rot r r
2

where I  is the moment of inertia and n  the rotational quantum number; this equation isrot       r
identical to (2.29). The validity of this equation depends on whether the different modes of
motion can be treated independently or not, which they can for strongly deformed nuclei like

U.238

11.5. The unified model of deformed nuclei

  The collective model gives a good description for even-even nuclei but cannot account for
some of the discrepancy between observed spins and the spin values expected from the
single-particle shell model. The latter was developed on the assumption of a nucleon moving
freely in a symmetrical potential well, a situation which is valid only for nuclei near closed
shells. The angular momentum of an odd-A deformed nucleus is due both to the rotational
angular momentum of the deformed core and to the angular momentum of the odd nucleon.
Consequently the energy levels for such a nucleus are different from those of the symmetric
shell model.
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  This situation was taken into account by S. G. Nilsson, who calculated energy levels for odd
nuclei as a function of the nuclear deformation $. Figure 11.8 shows how the energies of the
Nilsson levels vary with the deformation $ of the potential well. Each shell model level of
angular momentum j splits into j + 1/2 levels (called Nilsson levels or states). Each level may
contain up to two nucleons and form the ground state of a rotational band. In addition the
undeformed levels ($ = 0) appear in somewhat different order than for the symmetric shell
model (Table 11.6). This leads to a reversal in order for some of the levels, e.g. 1f  and 2p5/2  3/2
(this explains the observed level order for Sc, Fig. 11.5). The Nilsson levels are quite47

different in all characteristics from the shell model states, and their prediction of energies,
angular momenta, quantum numbers, and other properties agrees better with experimental data
for deformed nuclei than those of any other model.
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  As an example we may choose Na, which has a quadrupole moment of 0.101 barn.2 3
1 1

Assuming the nuclear radius to be 1.1 A  = (a+c)/2 (fm) we can use (11.28) and (11.29a)1/3

to calculate a deformation index $ = 0.12. (The value 1.1 for the constant r  in (3.7) giveso
better agreement in nuclei where the inertia of the nucleus is involved.) From Figure 11.8 the
11th proton must enter the 3/2 level rather than the 1d  level as the symmetric shell model5/2
indicates in Table 11.6. The experimental spin of 3/2 confirms the Nilsson prediction.
Similarly, for the deformed F and Ne, we expect from Table 11.8 the odd nucleon to give19   19

9   10
spin of 1/2 and not 5/2, as would be obtained from Table 11.6. Again, experiment agrees with
the prediction of 1/2.

11.6. Interaction between the nuclear spin and the electron structure

  We have already seen how the spin and orbital angular momentum of the electrons and of the
nucleus produce magnetic fields that interact with each other. The field produced by the
electrons is much larger than that of the nucleus, and consequently the nuclear spin is oriented
in relation to the field produced by the electron shell. By contrast the effects of the nuclear spin
on the electron structure is so small that it usually neglected. Nuclear physics has provided us
with instruments of such extreme sophistication and resolution that there are many ways of
measuring with great accuracy the interaction between the nucleus and the electrons. The result
has been new research tools of utmost importance, most prominent being the nuclear magnetic
resonance (nmr) techniques. The separate disciplines of chemistry, atomic physics, nuclear
physics, and solid state physics approach each other closely in such techniques, and an
understanding of the theory and experimental methods requires knowledge of all these subjects.
  In this section only a few important aspects of the interaction between nuclear spin and
electronic structure are reviewed. The methods described are usually not considered to fall
within the framework of nuclear chemistry, but in all scientific fields it is important to be able
to reach the border and look at developments and techniques used on the other side. Such
information is often the seed to further scientific development.

11.6.1. Hyperfine spectra

  In §11.3.4 we mentioned that the electrons in the atomic shell have Russell-Saunders coupling
(11.18), JP = LP + SP, where JP is referred to as the internal quantum number. The magnetic field
created by the electrons interacts with that caused by the nuclear spin to yield the grand atomic
angular momentum vector

FP = JP + IP (11.31a)

The magnitude of this momentum is

p  = SS[F(F+1)] , (11.31b)F
2
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The letters S and P stand for PL=0 (El =0) and 1, respectively. The superscript 2 refers to the number of possible S-1
j

values; thus 2S+1=2, i.e. S=Es =2. The subscript gives the PJ-value.i

FIG. 11.9. The development of hyperfine lines in an optical spectrum of sodium due to the
nuclear spin I, which enters through  FP=JP+IP.

but only projections p (z)=0,...SSF are permitted on an external (to the atom) field axis. ThisF
leads to a large number of possible energy levels, although they are limited by certain selection
rules.
  The nuclear spin can orient itself in relation to JP in

2I+1 directions if I # J
2J+1 directions if J # I

  Consider Na as an example (Fig. 11.9);  it has a nuclear spin I = 3/2. The yellow sodium23      1

line of 589.6 nm is caused by de-excitation of its electronically excited p state to the ground
state 2s .1/2
  The difference between the two p-states is very small, only 0.0022 eV (or about 0.6 nm), and
can only be observed with high resolution (fine spectra). To each of these three levels the
nuclear spin I has to be added, yielding the quantum number F according to (11.31). It is easy
to determine that the level number rule holds, e.g. for I = J we must have 2I + 1 = 4 possible
levels. These levels can be observed in optical spectrometers only at extremely high resolution
(hyperfine spectrum, hfs). The energy separation between the hfs lines depends on the nuclear
magnetic dipole F , the spin value I, and the strength of the magnetic field produced at theI
nucleus, as discussed in §11.2.4 (see also §11.6.3). The energy separation is very small, on
the order of 10  eV, corresponding to a wavelength difference of about 1/1000 of a nm. Even-5

if there is great uncertainty in the energy determination of the levels, simply counting the
number of hyperfine lines for a certain electronic JP-level gives the value of the nuclear spin,
because !I # m  # I (number of m  values = 2I + 1 ).I     I
  At very high resolutions it may be possible to determine F  from hfs, and from this toI
calculate I. The hyperfine splitting and shifting of optical lines have yielded important
information not only about nuclear spins and magnetic moments, but also about the electric
charge distribution and radius of the nucleus.
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11.6.2. Atomic beams

  The hyperfine spectra are obtained from light sources in the absence of any external (to the
atom) magnetic field. If the source is placed between the poles of a magnet, whose strength B
is progressively increased, the following sequence of changes takes place (see Table 11.2,
electron-nucleon interaction).
  Suppose B is increased slowly to 10  T. Each hyperfine level F is found to split into 2F +!2

1 levels, since the quantum mechanical rule of permitted projections on an external field vector
comes into operation. These permitted projections can vary from zero to a maximum value of
SSF; for F = 3 seven new lines are obtained. Further increases in B to 10 T leads to a
decoupling of F into its components J and I (Fig. 11.10). For each projection of J on the field
vector there are 2I + 1 lines (!I...0...+I), giving altogether (2J + 1)(2I + 1) lines. The
splitting of the spectral lines in a weak magnetic field is called the Zeeman effect.
  The decoupling of the angular momentum of the atom into its electronic and nuclear
components is used in the atomic beam apparatus to determine nuclear magnetic moments and
spin values. A beam of atoms, produced in an oven, is allowed to enter a tube along which a
series of magnets (usually three) have been placed. The magnetic field splits the atomic beam
into several component beams, each containing only atoms which have the same values for all
the quantum numbers. Between the magnets there is a small coil connected to a high frequency
oscillator, which produces a weak oscillating magnetic field. When this oscillator is tuned to
an energy hL, which exactly matches the energy difference between two quantum states of the
atom, energy may be absorbed producing a transition from one of the states to another.
Subsequently the atoms are deflected differently by the magnetic field than they were before the
energy absorption. By a combination of homogeneous and heterogeneous magnetic fields the
atomic beam apparatus allows only those atoms which have absorbed the energy quantum hL
to reach the detector. From the
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properties of the magnetic fields and the geometric dimensions and frequency of the instrument,
the magnetic moment of the atom in different quantum states can be determined. This allows
calculation of the magnetic moment and spin of the nucleus. This technique is of interest to the
nuclear chemist because spin values can be obtained for short-lived nuclei in submicroscopic
amounts. In contrast the hfs technique requires macroscopic amounts of atoms.

11.6.3. Nuclear magnetic resonance

  When an atom is placed in an external magnetic field (strength B) so that J and I decouple (cf.
(11.31)), the nuclear magnetic moment vector F  must precess around the field direction, withI
the components in the direction of the field restricted to

F  = g  B  m (11.32)I  I n I

In the external field the states with different m  have slightly different energies. The potentialI
magnetic energy of the nucleus is

E  = !FP  BP = !g  B  m  B (11.33)magn  I   I n I

The energy spacing between two adjacent levels is:

)E = g  B  B (11.34)I n

because )m  = ±1. For example, consider the case of the nucleus F for which g  = 5.256I              I
19

in a field of 1 T, )E = 5.256 × 5.0505 × 10  × 1 = 2.653 × 10  J. The frequency of!27      !26

electromagnetic radiation corresponding to this energy is 4.0 × 10  s  or 40 MHz. This lies7 !1

in the short wave length region, 8 = 7.5 m. This frequency is also the same as that of the
Larmor precession, as given by (11.24b).
  These relations can be used to calculate the nuclear magnetic moment, if I is known, or vice
versa. Figure 11.11 shows the results of an experiment in which a sample has been placed in
a variable magnetic field containing two coils, one connected to a radio transmitter operating
at 5 MHz and the other to an amplifier. The sample is a glass tube (B, O, Na, Al, Si atoms)
containing a piece of copper alloy (Cu, Al) in water (H, D, O). By varying the magnetic field
a number of resonances are observed. For example, for Na one has a resonance at 0.443 T.23

With (11.34) we can calculate g  = 1.48, and, consequently, the magnetic moment of Na isI
23

2.218 (Table 11.3). Further, for Na, m  = 3/2 and I = 3/2.23
I

  The magnetic field experienced by the nucleus is not exactly equal to the external field because
of the shielding effect of the electron shell, even if I and J are decoupled. Although this
shielding of the nucleus is very small, about 10  B, it can still easily be detected with modern!5

equipment. The shielding effect depends on the electronic structure.
  The structural information that can be provided by this method is very detailed, and a new and
deeper insight in chemical bonding and molecular structure is provided. The nmr technique has
therefore become a central tool for the investigation of chemical structures
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FIG. 11.11. Nmr spectrum for a glass vessel containing water and some copper. The magnetic
field is given in tesla (T).

in solids, liquids, and the gaseous state. Tomography by nmr is also a valuable tool for medical
imaging.

11.7. Radioactive decay and nuclear structure

  In the preceding section we have described three methods of determining nuclear spin ! one
optical and two magnetic. The nuclear spin plays a central role in forming the nuclear energy
states. It is therefore to be expected that it also should be of importance in nuclear reactions and
in radioactive decay. Let us consider some rules for the lifetimes of unstable nuclei, for their
permitted modes of decay, and for the role of nuclear spin. Knowing these rules, it is, for
example, possible from a decay scheme to predict the spin states of levels which have not been
measured.

11.7.1. Gamma-decay

  Photons are emitted in the transition of a nucleus from a higher energy state (level) to a lower

E  = hL = E  ! E (11.35)(    f  i

where f and i refer to the final and initial states. Because the photon has spin 1, de-excitation
through (-emission is always accompanied by a spin change )I $ 1. This leads to a change in
the charge distribution of the nucleus and hence also to a change in its magnetic properties.
Depending on the type of change occurring through the (-emission, the radiation is classified
as electric or magnetic (§11.4) according to the scheme in the left part of Table 11.7. Although
parity need not be conserved in (-decay, the parity change
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Average lifetime (J) in seconds
 Spin for (-energy level

Type of        Name of change  Parity ____________________________________________________

radiation      transition )I=)l  change 1MeV 0.2 MeV 0.05MeV
_______________________________________________________________________________________________________________________

E1   Electric dipole    1   Yes 4×10 5×10 3×10!16 !14 !12

M1   Magnetic dipole    1   No 3×10 4×10 2×10!14 !12 !10

E2   Electric quadrupole    2   No 2×10 6×10 6×10!11 !8 !5

M2   Magnetic quadrupole    2   Yes 2×10 5×10 5×10!9 !6 !3

E3   Electric octupole    3   Yes 2×10   2  70 h!4

M3   Magnetic octupole    3   No 2×10 180 200 d!2

TABLE 11.7. Classification of radiation emitted in (-decay and lifetime calculations of the excited states for given (-
energies (From Blatt and Weisskopf.)

associated with the different types of (-transitions is listed in that table.
  Based on the single-particle model, Blatt and Weisskopf have calculated probable lifetimes for
excited states assuming a model nucleus with a radius of 6 fm. For 2 -multipole transitions ofL

electric (E) or magnetic (M) type they derived the following equations

8 =4.4×10 {(L+1)/[L((2L+1)!!) ]{3/(L+3)} (E /197) r     (11.36a)EL (
21 2 2 (2L+1) 2L

8 =1.9×10 {(L+1)/[L((2L+1)!!) ]{3/(L+3)} (E /197) r     (11.36b)ML (
21 2 2 (2L+1) 2L!2

where L is the angular momentum carried away by the photon (= )l), 8 is the decay constant
in s , E( is the (-ray energy in MeV and r is the nuclear radius in fm.!1

  As seen, for decay involving electric multipole transitions the average lifetime J is
proportional to r , and for decay involving magnetic multipoles, to r ; in the decay the!2)l         !2()l!1)

nuclear spin quantum number s does not change. Calculated values are included in Table 11.7.
  The decay of Na (I = 1+) to Na (I = 4+) provides a useful example. The transition24m      24

involves )l = 3, no (i.e. there is no parity change), so it is designated as M3. The (-energy
is 0.473 MeV and the nuclear radius of Na is about 3.7 fm. In order to compare this energy24

with those given in Table 11.7, a radius correction from the assumed 6 fm to the observed 3.7
fm must be made; accordingly E  = E (r /6)  for M-type radiation. This gives acorr  obs i

!2()l!1)

hypothetical energy of 0.473(3.7/6)  = 3 MeV. According to Table 11.7 the lifetime should!4

be > 0.02 s; the observed value is 0.035 s. The agreement between experiment and calculation
is sometimes no better than a factor of 100.
  The Blatt-Weisskopf relationship between energy and lifetime is only applicable for excited
nucleonic states, not for rotational states. In the decay of these states the rotational quantum
number always changes by two units and the lifetime of the states is proportional to E Q$ .(

!5 !2

The lifetimes are so short that no rotationally excited isomers have been observed as yet.
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11.7.2. Beta-decay

  Beta-decay theory is quite complicated and involves the weak nuclear interaction force, which
is less understood than the strong interaction. The theory for $-decay derived by Fermi in 1934
leads to the expression

8 = G*M* f (11.37a)2

for the decay constant, 8. G is a constant, *M* is the nuclear matrix element describing the
change in the wave function during the $-transformation (i.e. of a proton into a neutron for
positron emission, or the reverse for negatron emission), f is a function of E  and Z. *M*max
depends on the wave functions before and after the transformation and gives the "order" of
decay. Since t  = ln 2/82

ln 2 = G*M* ft (11.37b)2
2

we see that the product ft  should be constant for a decay related to a certain *M*. The ft value2

(omitting index 2) is often referred to as the comparative $ half-life, and nomograms for its
calculation are given in nuclear data tables and decay schemes. The lower the ft value the higher
is the probability for decay, and the shorter is the half-life. Gamow and Teller have given
selection rules for $-decay which are useful for estimating decay energy, half-life, or spin in
a certain decay process, if two of these properties are known. These rules are summarized in
Table 11.8.
  For example, the decay of Na occurs 99% through $-emission (with an E  = 1.4 MeV)24

max
to an excited state of Mg (Fig. 4.7). The log ft value of the transition is 11.1. The ground24

state of Mg is 0+; the excited state has positive parity. Thus the selection rules indicate an24

allowed transition for which the only spin changes permitted are 0 and ±1. The ground state
of Na is 4+, and the observed excited state (at the 4.12 MeV level) is 4+, in agreement with24

the rule.

11.7.3. Alpha-decay theory

  If we calculate the Q-value for the "-decay reaction (4.11) from the mass formulae (4.12) we
find that Q > 0 for all nuclei with A > 150, which means that we would expect all elements
heavier than the rare earths to be unstable with respect to "-decay. However, the accuracy of
eqn. (3.8) decreases when we move away from the region of $ stability. Hence, we should not
be surprised that nuclides, with a high Z/A ratio, far from stability have been found to decay
by "-emission down to A = 106. For nuclei nearer $-stability, decay by emission of "-particles
is observed for some isotopes of rare earths and heavier elements, but it occurs frequently only
for A $ 210, i.e. nuclides heavier than Bi.209

  In §4.17 we mentioned the discovery by Geiger and Nuttall that the lower the "-energy the
longer was the half-life of the "-decay; doubling the decay energy may reduce the half-life by
a factor of 10 . Alpha-decay has been observed with energies from slightly greater than 1.820

MeV (e.g. Nd, E  = 1.83 MeV, t  = 2.1 × 10  y) to about 10 MeV (e.g. Ns, E  =144          15       262
"    2            "

10.38 MeV, t  = 4.7 ms).  The isotopes of the  actinide elements typically2
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Transition type )I Parity change Log ft
___________________________________________________________

Super allowed 0      No 3
Allowed 0,±1      No 4-6(a)

First forbidden 0,±1,±2      Yes 6-9
ond forbidden ±2,±3      No 10-13(b)

___________________________________________________________

Not 0 6 0,  Also 0 6 0.(a)      (b)

TABLE 11.8. Gamow!Teller selection rules for $-decay

have "-energies between 4 and 10 MeV.
  The observed stability against "-decay for most nuclei in the range 102 # A # 210 having a
positive Q  can be explained by assuming the "-particle exists as a (preformed) entity inside"
the nucleus but with insufficient kinetic energy to overcome the "internal Coulomb barrier".
This barrier is assumed to be of the same type, although of somewhat different shape, as the
external Coulomb barrier, which is discussed in some detail in §12.4.
  Assume that the average kinetic energy is at the level marked E  in Figure 11.12. If the"
particles in the nucleus have a Boltzmann energy distribution, an "-particle could in principle
form in the nucleus and perhaps acquire sufficient kinetic energy through collisions to overcome
the barrier (E ). It would then be emitted with an energy E , which for an element likecb          cb
uranium is 26 MeV. However, the observed "-energy is only 4.2 MeV.
  This contradiction was explained by Gamow, and independently by Gurney and Condon, in
1928, by using a quantum mechanical model, which retained the feature of the "one-body
model" with a preformed "-particle inside the nuclear potential wall of even-even nuclei.
   The time independent solution to the Schrödinger wave equation for an "-particle inside the
nuclear potential well is a wave function which has a small, but non-zero, value even outside
the potential well. The probability, p, to find the "-particle outside the potential well is the
square of the wave function and is found to be

              Rx

p = exp[!{4B(2µ) /h}I(U(r)!Q ) dr] (11.38)2 2 
"

          R

where index " refer to the "-particle, µ is the reduced mass of "-particle and residual nucleus,
µ = M M /(M + M ), R and R  are inner and outer integration limits respectively (where" 1 "  1    x
the potential energy of the barrier is equal to the energy of the emitted particle, cf. Fig 11.12),
r is the distance from the center of the nucleus, U(r) is the potential energy of the "-particle,
and Q  is the total "-decay energy. Index 1 refer to the nucleus remaining after emission of the"
"-particle.
  The decay constant can be regarded as the product of p and the frequency, f, by which the "-
particle hits the barrier from inside. If we assume that the deBroglie wavelength, h/µv, for an
"-particle of velocity v inside the nucleus is approximately equal to the nuclear radius, R, we
obtain
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 It is important to recognize the difference between the classical CGS system where the force F between point charges1

in vacuum is F = z z e /r  and the SI system where F = z z e /(4B,, r ).1 2          1 2 
2 2        2  2

0 

FIG. 11.12. Alpha-penetration through the potential wall.

h/µv . R (11.39)

  The frequency f can then be estimated from v if we assume that the "-particle bounces back
and forth inside the potential well with constant velocity.

f = v/2R . h/2µR (11.40)2

  Combining (11.40) with (11.38) we obtain the following expression for the decay constant

                             Rx

8 . [h/(2µR )] exp{![4B(2µ) /h]I(U(r)!Q ) dr} (11.41)2  2 2 
"

                          R

  The same relation also holds ! with appropriate substitutions ! for any charged particle trying
to enter the nucleus from outside the potential barrier (cf. §12.4), where, however, only one
impact is possible, i.e. f = 1.
  For some simple mathematical forms of the potential energy U(r) it is possible to find
analytical solutions to the integral in (11.41). The simplest form of U(r), a square well nuclear
potential according to Figure 11.12, yields the following expression after integration and some
algebra1

8.[h/(2µR )] exp{![(2µ) e Z Z /(,, hQ )][arccos(u)!u(1!u ) ]}  (11.42)2  2 2    2 2 2 
1 " 0 "

where

u = (E /E )  = [4B,, Q R/(Z Z e )] (11.43)" cb   0 " 1 " 
2  2 2

The radius of the decaying nucleus can be estimated from
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FIG. 11.13. The variation of "-half-life with mass number. Lines connect isotopes.

R = r A + r  . 1.30 A + 1.20  (fm) (11.44)0 1   "   1
a     a 

where A  is the mass number of the nucleus after emission of the "-particle and r  is the1              "
effective radius of the "-particle. Equation (11.42) can not only be used to compute decay
constants, but also to estimate the nuclear radius for even-even "-emitters from measured half-
lives and decay energies. The calculated decay constant is very sensitive to Q : a 1 MeV"
increase in Q  increases 8 (and decreases t ) by a factor of about 10 . It is also very sensitive"     2

5

to the nuclear radius: a 10% increase in R (or the Coulomb radius r ; see Fig. 12.4) whichc
means a corresponding decrease of the Coulomb barrier height, increases 8 by a factor of 150.
  Decay constants and partial " half-lives computed from (11.42) are normally within a factor
4 of the measured values for even-even nuclei. The half-lives of even-odd, odd-even, and odd-
odd nuclides are often longer than predicted by equations like (11.42), even after
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inclusion of more elaborate nuclear potentials and angular momentum effects in the theory. The
ratio between the observed and predicted half-lives is called hindrance factor and ranges from
one to ~3000.
  Assuming the Coulomb barrier to be much larger than Q , i.e. u small, designating the"
resulting exponential term in (11.42) by e  and taking the logarithm of the resulting!2G

expression we obtain

log 8 = constant ! 2G (11.45)

which is very similar to the empirical Geiger-Nuttall law.
  Figure 11.13 shows the systematic change of "-decay half-life with nuclear charge and mass
for heavy nuclei, lines connect data for constant Z. Odd-even effects and influence from magic
numbers are visible. Such diagrams have historically played an important role in the synthesis
and identification of isotopes of the heaviest elements.
  The "-decay theory was the first successful (quantum mechanical) explanation of radioactive
decay, and as such played a major role in further development of nuclear theories and models.
Although its simplicity causes it to fail for nonspherical nuclei as well as those near closed
shells, such effects can be taken into account in more advanced Nilsson-type calculations.

11.7.4. Spontaneous fission

  In §4.4 we found that fission of heavy nuclei like U is exoergic and in §4.6 that it is a236

common decay mode for the heaviest nuclei. From the semiempirical mass equation (3.8) it can
be found that fission of nuclei with A $ 100 have positive Q-values. Why is the decay by
spontaneous fission only observed for nuclei with A $ 230?
  The breakup of a large even-even nucleus into two positively charged fragments of roughly
equal mass and charge can be treated in a way similar to that of "-decay. Assuming separation
into two spherical fragments, A  Z  and A  Z , in point contact the Coulomb energy can be1 1  2 2
calculated to be

E  = 0.96 Z Z /(A + A )  (MeV) (11.46)cb   1 2 1   2
a  a 

where r  = 1.5 fm has been assumed. In a real case it is necessary to consider that the newly0
formed fragments have non-spherical shapes and the value obtained from (11.46) is thus very
approximate but sufficient for our discussion. The spontaneous fission of a nucleus is obviously
hindered by a Coulomb barrier, the fission barrier, and the process should be treated as a
barrier penetration problem for Q < E . When Q $ E , breakup of the nucleus will occurcb     cb
within a few nuclear vibrations, ~ 10 s.!22 

  The critical condition Q = E  for fission of an even-even nucleus into two equal fragmentscb
with an unchanged charge to mass ratio can be estimated by equating E  from (11.46) with thecb
Q-value computed from (3.8). Neglecting the pairing term this results in

(Z /A)  = 37.89 (11.47a) 2
crit
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FIG. 11.14. Fission barrier height as function of Z /A.2

FIG. 11.15. Qualitative features of the fission barrier for Pu (From Britt).
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Because asymmetric fission is more common than symmetric and the emerging fission
fragments have non-spherical form, the numerical value derived above is not very accurate.
However, the concept of a critical value of Z /A is important. A more sophisticated treatment 2

results in the equation

(Z /A)  = 50.883 [1 - 1.7826 (N - Z) /A ] (11.47b) 2         2 2 
crit

We can then define a fissionability parameter, x,

x = (Z /A)/(Z /A) (11.48) 2  2
crit

as a measure of how prone to fission a nucleus is.
  Figure 11.14 shows fission barrier height as function of Z /A. Calculations by Myers and 2

Swiatecki using a refined liquid drop model predict that the barrier height should pass through
a maximum around Z /A ~ 16. The penetrability of the barrier increases roughly exponentially 2

with its height. Hence, low values of Z /A (but above the value corresponding to the maximum 2

barrier height) implies extremely long half-lives. As an example, U has Z /A = 35.56, E238    2
cb

= 5.8 and a partial half-life for spontaneous fission, t , of ~ 10  y. By comparison we can2,SF
16

estimate that a nucleus with A = 100 and Z = 44 ( Ru), Z /A = 19.36, has a fission barrier100   2

tens of MeV high and a practically infinite half-life with regard to spontaneous fission.
  So far we have neglected the effects of pairing, nuclear shell structure and nuclear
deformation on the fission process. Odd-even, even-odd and odd-odd nuclei exhibit large
hindrance factors, HF, for spontaneous fission somewhat similar to the phenomenon observed
in "-decay. The presence of one or two odd nucleons leads to spin and parity values which must
be conserved during the deformations leading to fission and thus constrains the possible shapes
and energy levels. This contributes to the occurrence of hindrance factors. Hence, o-e, e-o and
o-o nuclei have normally much longer spontaneous fission half-lives than their neighboring e-e
nuclei.
  The ground state energy, E, of a nucleus can be regarded as a sum of the liquid drop model
energy (including deformation), E , the pairing correction, * , and the shell correction, * ,LDM     P      S
to that energy.

E = E  + *  + * (11.49)LDM  P  S

The use of (11.49), with deformation dependent shell corrections, leads to fission barriers with
two maxima, see Figure 11.15. The occurrence of a secondary minimum is consistent with the
observation of spontaneous fission isomers. Shell and pairing effects also give rise to long
spontaneous fission and "-decay half-lives for nuclides around magic N or Z numbers. Detailed
calculations based on advanced theories of nuclear structure lead to the prediction of an area of
spheroidal nuclei with increased nuclear stability (in their ground state) around Z = 114 and N
= 184, the so called superheavy elements. However, attempts to synthesize such nuclei in their
ground state by heavy ion reactions have been fruitless.
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11.8. Exercises

  11.1. The quantum numbers s = 1/2 and l = 2 are assigned to a particle. (a) If spin and orbital movements are
independent, how many space orientations (and thus measured spectral lines if no degeneration of energy states occur)
are possible in an external field of such a strength that both movements are affected? (b) How many lines would be
observed if spin and orbital movements are coupled?
  11.2. In the hydrogen atom the K-electron radius is assumed to be 0.529 × 10  m (the Bohr radius). (a) Calculate!10

the orbital velocity of the electron assuming its mass to be m . (b) How much larger is its real mass because of thee
velocity? Does this affect the calculations in (a)?
  11.3. A beam of protons pass through a homogeneous magnetic field of 0.5 T. In the beam there is a small high
frequency coil which can act on the main field so that the proton spin flips into the opposite direction. At which frequency
would this occur?
  11.4. Calculate the nuclear Landé factor for B.11

  11.5. In Table 11.5 the first degenerate levels have been given. Using the same assumptions, what states will be
contained in the next level and how many nucleons will it contain?
  11.6. How deep is the nuclear well for Sn if the binding energy of the last nucleon is 9 MeV?116

  11.7. Calculate the spins and nuclear g factors for (a) Ca, (b) Co, and (c) Pr, using data in Table 11.3.45   60    141

  11.8. The observed quadrupole moment of Co is 0.40 barn. (a) What is the deformation value $? (b) What spin value59

is expected from the Nilsson diagram?
  11.9. Which neutron and proton states account for the spin value I of N?14

  11.10. A (-line at 0.146 MeV is assigned to a +4 6 +0 rotational level change in Pu. (a) What should the energy238

of the +2 and +6 rotational levels be? Compare with the measured values of 0.044 and 0.304 MeV. (b) If Pu is238

considered to be a homogenous sphere, what will its apparent radius be? Compare with that obtained using relation (3.7).
  11.11. A Pu compound is placed in a test tube in a 40 MHz nmr machine. At what field strength does resonance239

occur with the nuclear spin? Is the measurement possible? Relevant data appear in Table 11.3.
  11.12. Using the Gamow theory the probability for tunneling of an "-particle in the decay of U is 1:10 , and the238   38

"-particle hits the walls about 10  times per second. What average lifetime can be predicted for U from this21           238

information?
  11.13. Calculate the half-life for "-decay of Sm assuming that Q  is 2.314 MeV. Compare the result with the147

"
measured half-life and compute the hindrance factor.

11.9. Literature

I. PERLMAN, A. GHIORSO, and G. T. SEABORG, Systematics of alpha-radioactivity, Phys. Rev. 77 (1950) 26.
I. PERLMAN and J. O. RASMUSSEN, Alpha radioactivity, Handbuch der Physik 42, Springer-Verlag, 1957.
W. J. MOORE, Physical Chemistry, 3rd edn., Prentice-Hall, I. 1962.
W. D. MYERS and W. J. SWIATECKI, Nuclear Masses and Deformations, Nuclear Physics 81 (1966) 1.
E. K. HYDE, Nuclear models, Chemistry 40 (1967) 12.
H. C. BRITT, in N. M. EDELSTEIN (Ed.), Actinides in Perspective, Pergamon, 1982, p. 245.
K. S. KRANE, Introductory Nuclear Physics, Wiley, 1988.
G. T. SEABORG and W. D. LOVELAND, The Elements Beyond Uranium, Wiley-Interscience, 1990.
D. N. POENARU (Ed.), Handbook of Decay Modes, CRC Press, 1993.


